16 research outputs found

    DNA deaminases: AIDing hormones in immunity and cancer

    Get PDF
    It is well established that hormones can cause cancer, much less known is how they induce this change in our somatic cells. This review highlights the recent finding that estrogen can exert its DNA-damaging potential by directly activating DNA deaminases. This recently discovered class of proteins deaminate cytosine to uracil in DNA, and are essential enzymes in the immune system. The enhanced production of a given DNA deaminase, induced by estrogen, can lead not only to a more active immune response, but also to an increase in mutations and oncogenic translocations. Identifying the direct molecular link between estrogen and a mutation event provides us with new targets for studying and possibly inhibiting the pathological side-effects of estrogen

    Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa

    Get PDF
    The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz) in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA–binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse) and within species (human). The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs

    Progress in preventive therapy for cancer: a reminiscence and personal viewpoint.

    No full text
    Prophylactic drug treatment with aspirin, statins and anti-hypertensive agents has had a major impact on the incidence of cardiovascular disease and is now well established. Progress in therapeutic cancer prevention has been much slower; only recently have effective agents been clearly established. Breast cancer has led the way and endocrine agents used to treat it-notably tamoxifen and the aromatase inhibitors-have now been shown to have a substantial preventive effect as well. However, these agents carry some toxicity and thus identifying high-risk women who are likely to benefit most is a key priority. In contrast, the ability of low-dose aspirin to prevent about one-third of colorectal, gastric, and oesophageal cancers, combined with its much lower toxicity profile, make it attractive for a much larger proportion of the general population. Vaccination against the human papilloma virus is also a preventive intervention with large benefits for the whole population. Here I recall my involvement in these initiatives and offer a personal viewpoint on what has been achieved and what remains to be done
    corecore