3 research outputs found

    Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters

    Get PDF
    An increase in the occurrence of potentially pathogenic Vibrio species is expected for waters in Northern Europe as a consequence of global warming. In this context, a higher incidence of Vibrio infections is predicted for the future and forecasts suggest that people visiting and living at the Baltic Sea are at particular risk.This study aimed to investigate antimicrobial resistance patterns among Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 isolates that could pose a public health risk. Antimicrobial susceptibility of 141 V. vulnificus and 184 V. cholerae non-O1/non-O139 strains isolated from German coastal waters (Baltic Sea and North Sea) as well as from patients and retail seafood was assessed by broth microdilution and disk diffusion. Both species were susceptible to most of the agents tested (12 subclasses) and no multidrug-resistance was observed. Among V. vulnificus isolates, non-susceptibility was exclusively found towards aminoglycosides. In case of V. cholerae, a noticeable proportion of strains was non-susceptible to aminopenicillins and aminoglycosides. In addition, resistance towards carbapenems, quinolones, and folate pathway inhibitors was sporadically observed. Biochemical testing indicated the production of carbapenemases with unusual substrate specificity in four environmental V. cholerae strains. Most antimicrobial agents recommended for treatment of V. vulnificus and V. cholerae non-O1/non-O139 infections were found to be effective in vitro. However, the occurrence of putative carbapenemase producing V. cholerae in German coastal waters is of concern and highlights the need for systematic monitoring of antimicrobial susceptibility in potentially pathogenic Vibrio spp. in Europe

    Horizontal acquisition of a multidrug-resistance module (R-type ASSuT) is responsible for the monophasic phenotype in a widespread clone of Salmonella serovar 4,[5],12:i:

    Get PDF
    Salmonella enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium incapable of expressing the second-phase flagellar antigen (fljAB operon), and it is recognized to be one of the most prevalent serovars causing human infections. A clonal lineage characterized by phage type DT193, PulseNet PFGE profile STYMXB.0131 and multidrug resistance to ampicillin, streptomycin, sulphonamides and tetracycline (R-type ASSuT) is commonly circulating in Europe. In this study we determined the deletions affecting the fljAB operon and the resistance region responsible for the R-type ASSuT in a strain of Salmonella enterica serovar 4,5,12:i:- DT193/STYMXB.0131, through an approach based on PCRs and Southern blot hybridization of genomic DNA. Using a set of nine specific PCRs, the prevalence of the resistance region was assessed in a collection of 144 S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains isolated from Germany, Switzerland and Italy. A 28 kb-region is embedded between the loci STM2759 and iroB, replacing the DNA located in between, including the fljAB operon. It encompasses the genes bla TEM-1, strA-strB, sul2 and tet(B) responsible for the R-type ASSuT together with genes involved in plasmid replication and orfs of unknown function characteristically located on IncH1 plasmids. Its location and internal structure is fairly conserved in S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains regardless of the isolation source or country. Hence, in the S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 clonal lineage widespread in Germany, Switzerland and Italy, a resistance region derived from IncH1 plasmids has replaced the chromosomal region encoding the second flagellar phase and is an example of the stabilization of new plasmid-derived genetic material due to integration into the bacterial chromosome

    Acquired antibiotic resistance genes:an overview

    Get PDF
    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria
    corecore