22 research outputs found

    The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity

    Get PDF
    Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by “tethering proteins” that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson’s disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson’s disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson’s disease and FTD/ALS

    Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated

    No full text
    Abstract Background Multiple sclerosis (MS) is the endpoint of a complex and still poorly understood process which results in inflammation, demyelination and axonal and neuronal degeneration. Since the first description of MS, psychological stress has been suggested to be one of the trigger factors in the onset and/or relapse of symptoms. However, data from animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) are inconsistent and the effect of stress on EAE onset and severity depends on duration and time of application of the stress protocol and the underlying mechanisms. Methods Dark Agouti rats were inoculated with MOG/CFA to induce EAE, and an immobilisation stress protocol with two different durations (12 and 21 days, starting at the moment of MOG-inoculation) was applied in order to analyse the effect of stress on disease onset and neuroinflammation. Results Twelve days of stress exposure increased EAE clinical score in Dark Agouti rats. In addition, these animals presented higher levels of MMP-9 and proinflammatory PGE2 in spinal cord. In contrast, animals chronically exposed to stress (21 days) showed a significantly lower incidence of EAE clinical signs and reduced myelin loss, leukocyte infiltration and accumulation of inflammatory/oxidative mediators in spinal cord. Interestingly, chronically stressed animals showed a parallel increase in levels of the anti-inflammatory prostaglandin 15d-PGJ2, the main endogenous agonist of PPARÎł. Conclusions Our results demonstrate that, depending on duration, stress exposure elicits opposite effects on PGE2/15d-PGJ2 ratios in spinal cord of EAE-induced Dark Agouti rats. Further studies are needed to elucidate if these changes in prostaglandin balance are sufficient to mediate the differences in clinical score and inflammation here reported, and to establish the potential utility of pharmacological intervention in MS directed toward anti-inflammatory pathways.</p

    Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats:mechanisms implicated

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is the endpoint of a complex and still poorly understood process which results in inflammation, demyelination and axonal and neuronal degeneration. Since the first description of MS, psychological stress has been suggested to be one of the trigger factors in the onset and/or relapse of symptoms. However, data from animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) are inconsistent and the effect of stress on EAE onset and severity depends on duration and time of application of the stress protocol and the underlying mechanisms. METHODS: Dark Agouti rats were inoculated with MOG/CFA to induce EAE, and an immobilisation stress protocol with two different durations (12 and 21 days, starting at the moment of MOG-inoculation) was applied in order to analyse the effect of stress on disease onset and neuroinflammation. RESULTS: Twelve days of stress exposure increased EAE clinical score in Dark Agouti rats. In addition, these animals presented higher levels of MMP-9 and proinflammatory PGE(2 )in spinal cord. In contrast, animals chronically exposed to stress (21 days) showed a significantly lower incidence of EAE clinical signs and reduced myelin loss, leukocyte infiltration and accumulation of inflammatory/oxidative mediators in spinal cord. Interestingly, chronically stressed animals showed a parallel increase in levels of the anti-inflammatory prostaglandin 15d-PGJ(2), the main endogenous agonist of PPARÎł. CONCLUSIONS: Our results demonstrate that, depending on duration, stress exposure elicits opposite effects on PGE(2)/15d-PGJ(2 )ratios in spinal cord of EAE-induced Dark Agouti rats. Further studies are needed to elucidate if these changes in prostaglandin balance are sufficient to mediate the differences in clinical score and inflammation here reported, and to establish the potential utility of pharmacological intervention in MS directed toward anti-inflammatory pathways
    corecore