3 research outputs found
Rapid decline of Zika virus NS1 antigen-specific antibody responses, northeastern Brazil
Zika virus (ZIKV) is a positive-stranded RNA virus within the Flaviviridae family. After decades of circulation in Asia, ZIKV was introduced to Brazil in 2014–2015, associated with a rise in congenital malformations. Unlike the genetically related dengue virus (DENV), ZIKV constitutes only one serotype. Although assumed that ZIKV infection may engender lifelong immunity, the long-term kinetics of ZIKV antibody responses are unclear. We assessed long-term kinetics of ZIKV NS1-IgG response in 144 individuals from 3 different subpopulations: HIV patients, tuberculosis patients and healthy individuals first tested in 2016 and retested 1.5–2 years after the 2015–2016 ZIKV epidemic in Salvador de Bahia, Brazil, using a widely distributed NS1-based commercial ELISA. The seropositivity in 2016 reached 59.0% (85/144, 95% confidence interval (CI) 50.7–66.7%), and decreased to 38.6% (56/144, CI 31.3–47.0%) 1.5–2 years later. In addition, the median ZIKV NS1-ELISA reactivity for individuals that remained positive in both timepoints significantly decreased from a ratio of 4.4 (95% CI 3.8–5.0) to 1.6 (95% CI 1.6–1.9) over the 2-year interval (Z: − 6.1; p < 0.001) irrespective of the subpopulation analyzed. Initial 2016 DENV antibody response was non-significant between groups, suggesting comparable DENV background. The high 20.6% seroreversion suggest that widely used serologic tests may fail to account a considerable proportion of past ZIKV infections in flavivirus endemic countries. In addition, ZIKV immunity might be shorter-lived than previously thought, which may contribute to local ZIKV resurgence once individual immune responses wane sufficiently to reduce community protective immunity in addition to birth and migration
A Recombinant Zika Virus Envelope Protein with Mutations in the Conserved Fusion Loop Leads to Reduced Antibody Cross-Reactivity upon Vaccination
Zika virus (ZIKV) is a zoonotic, human pathogenic, and mosquito-borne flavivirus. Its distribution is rapidly growing worldwide. Several attempts to develop vaccines for ZIKV are currently ongoing. Central to most vaccination approaches against flavivirus infections is the envelope (E) protein, which is the major target of neutralizing antibodies. Insect-cell derived, recombinantly expressed variants of E from the flaviviruses West Nile and Dengue virus have entered clinical trials in humans. Also for ZIKV, these antigens are promising vaccine candidates. Due to the structural similarity of flaviviruses, cross-reactive antibodies are induced by flavivirus antigens and have been linked to the phenomenon of antibody-dependent enhancement of infection (ADE). Especially the highly conserved fusion loop domain (FL) in the E protein is a target of such cross-reactive antibodies. In areas where different flaviviruses co-circulate and heterologous infections cannot be ruled out, this is of concern. To exclude the possibility that recombinant E proteins of ZIKV might induce ADE in infections with related flaviviruses, we performed an immunization study with an insect-cell derived E protein containing four mutations in and near the FL. Our data show that this mutant antigen elicits antibodies with equal neutralizing capacity as the wildtype equivalent. However, it induces much less serological cross-reactivity and does not cause ADE in vitro. These results indicate that mutated variants of the E protein might lead to ZIKV and other flavivirus vaccines with increased safety profiles
Publisher Correction: Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities
An amendment to this paper has been published and can be accessed via a link at the top of the paper