4 research outputs found

    A numerical adaptation of SAW identities from the honeycomb to other 2D lattices

    Full text link
    Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is 2+2.\sqrt{2+\sqrt{2}}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed on the honeycomb lattice persist on other lattices. This permits the accurate estimation, though not an exact evaluation, of certain critical amplitudes, as well as critical points, for these lattices. For the honeycomb lattice an exact amplitude for loops is proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis, giving greater precision. Explanation of why we observe what we do. Extra reference

    Two-dimensional self-avoiding walks and polymer adsorption: Critical fugacity estimates

    Full text link
    Recently Beaton, de Gier and Guttmann proved a conjecture of Batchelor and Yung that the critical fugacity of self-avoiding walks interacting with (alternate) sites on the surface of the honeycomb lattice is 1+21+\sqrt{2}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks interacting with a surface on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed for the honeycomb lattice persist irrespective of lattice. This permits the accurate estimation of the critical fugacity for the corresponding problem for the square and triangular lattices. We consider both edge and site weighting, and results of unprecedented precision are achieved. We also \emph{prove} the corresponding result fo the edge-weighted case for the honeycomb lattice.Comment: 12 pages, 3 figures, 7 table

    Integrability as a consequence of discrete holomorphicity: the Z_N model

    Full text link
    It has recently been established that imposing the condition of discrete holomorphicity on a lattice parafermionic observable leads to the critical Boltzmann weights in a number of lattice models. Remarkably, the solutions of these linear equations also solve the Yang-Baxter equations. We extend this analysis for the Z_N model by explicitly considering the condition of discrete holomorphicity on two and three adjacent rhombi. For two rhombi this leads to a quadratic equation in the Boltzmann weights and for three rhombi a cubic equation. The two-rhombus equation implies the inversion relations. The star-triangle relation follows from the three-rhombus equation. We also show that these weights are self-dual as a consequence of discrete holomorphicity.Comment: 11 pages, 7 figures, some clarifications and a reference adde
    corecore