6 research outputs found

    Cloning and Characterization of Two Lactobacillus casei Genes Encoding a Cystathionine Lyaseâ–ż

    Full text link
    Volatile sulfur compounds are key flavor compounds in several cheese types. To better understand the metabolism of sulfur-containing amino acids, which certainly plays a key role in the release of volatile sulfur compounds, we searched the genome database of Lactobacillus casei ATCC 334 for genes encoding putative homologs of enzymes known to degrade cysteine, cystathionine, and methionine. The search revealed that L. casei possesses two genes that putatively encode a cystathionine β-lyase (CBL; EC 4.4.1.8). The enzyme has been implicated in the degradation of not only cystathionine but also cysteine and methionine. Recombinant CBL proteins catalyzed the degradation of l-cystathionine, O-succinyl-l-homoserine, l-cysteine, l-serine, and l-methionine to form α-keto acid, hydrogen sulfide, or methanethiol. The two enzymes showed notable differences in substrate specificity and pH optimum

    Effect of Sequential Inoculation with Non-Saccharomyces and Saccharomyces Yeasts on Riesling Wine Chemical Composition

    Full text link
    In recent years, studies have reported the positive influence of non-Saccharomyces yeast on wine quality. Many grape varieties under mixed or sequential inoculation show an overall positive effect on aroma enhancement. A potential impact by non-Saccharomyces yeast on volatile and non-volatile compounds should benefit the flavor of Riesling wines. Following this trend, four separate sequential fermentations (using the non-Saccharomyces yeasts Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, and Lachancea thermotolerans with Saccharomyces cerevisiae) were carried out on Riesling must and compared to a pure culture of S. cerevisiae. Sequential fermentations influenced the final wine aroma. Significant differences were found in esters, acetates, higher alcohols, fatty acids, and low volatile sulfur compounds between the different trials. Other parameters, including the production of non-volatile compounds, showed significant differences. This fermentation process not only allows the modulation of wine aroma but also chemical parameters such as glycerol, ethanol, alcohol, acidity, or fermentation by-products. These potential benefits of wine diversity should be beneficial to the wine industry

    Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma

    Full text link
    This study was performed with the aim of characterizing the fermentative performance of three commercial strains of Torulaspora delbrueckii and their impact on the production of volatile and non-volatile compounds. Laboratory-scale single culture fermentations were performed using a commercial white grape juice. The addition of commercial nutrient products enabled us to test the yeasts under two different nutrient conditions. The addition of nutrients promoted fermentation intensity from 9% to 20 % with significant differences (p < 0.05) among the strains tested. The strain diversity together with the nutrient availability influenced the production of volatile compounds

    The Use of <i>Hanseniaspora occidentalis</i> in a Sequential Must Inoculation to Reduce the Malic Acid Content of Wine

    Full text link
    In this study, the impact of the apiculate yeast Hanseniaspora occidentalis as a co-partner with Saccharomyces cerevisiae was investigated in a sequential-type mixed-culture fermentation of Muscaris grape must. As with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing was the almost complete abolition of malic acid (from 2.0 g/L to 0.1 g/L) in the wine. Compared to the pure S. cerevisiae inoculum, there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements, such as rose oxide, was also observed. This work shows the promising use of H. occidentalis in a mixed-culture must fermentation, especially in the acid modulation of fruit juice matrices

    Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines

    Full text link
    Most wine aroma compounds, including the varietal fraction, are produced or released during wine production and derived from microbial activity. Varietal aromas, typically defined as terpenes and thiols, have been described as derived from their non-volatile precursors, released during wine fermentation by different yeast hydrolytic enzymes. The perception of these minority aroma compounds depends on the chemical matrix of the wine, especially on the presence of majority aroma compounds, such as esters or higher alcohols. Strategies aiming to reduce the production of these masking flavors are on the spotlight of enology research as a way to better define varietal standard profiles for the global market. Using a natural white must from Verdejo variety (defined as a thiol grape variety), here we describe the analytical and sensorial impact of using, in sequential inoculations, a selected strain of Metschnikowia pulcherrima, in combination with two different Saccharomyces cerevisiae strains. An increase in the levels of the thiol 4-MSP (4-methyl-4-sulfanylpentan-2-one) over its sensory threshold, together with a decrease in higher alcohol production, was observed when M. pulcherrima was used. This has an important impact on these wines, making them fruitier and fresher, always preferred by the sensory panel

    Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations

    Full text link
    In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors
    corecore