463 research outputs found

    Extending the baseline: Spitzer Mid-Infrared Photometry of Globular Cluster Systems in the Centaurus A and Sombrero Galaxies

    Full text link
    Spitzer IRAC mid-infrared photometry is presented for the globular cluster (GC) systems of the NGC 5128 ("Centaurus A") and NGC 4594 ("Sombrero") galaxies. Existing optical photometric and spectroscopic are combined with this new data in a comprehensive optical to mid-IR colour catalogue of 260 GCs. Empirical colour-metallicity relationships are derived for all optical to mid-IR colour combinations. These colours prove to be very effective quantities to test the photometric predictions of simple stellar population (SSP) models. In general, four SSP models show larger discrepancies between each other and the data at bluer wavelengths, especially at high metallicities. Such differences become very important when attempting to use colour-colour model predictions to constrain the ages of stellar populations. Furthermore, the age-substructure determined from colour-colour diagrams and 91 NGC 5128 GCs with spectroscopic ages from Beasley et al. (2008) are inconsistent, suggesting any apparent GC system age-substructure implied by a colour-colour analysis must be verified independently. Unlike blue wavebands, certain optical to mid-IR colours are insensitive to the flux from hot horizontal branch stars and thus provide an excellent metallicity proxy. The NGC 5128 GC system shows strong bimodality in the optical R-band to mid-IR colour distributions, hence proving it is bimodal in metallicity. In this new colour space, a colour-magnitude trend, a "blue tilt", is found in the NGC 5128 metal-poor GC data. The NGC 5128 young GCs do not contribute to this trend. [abridged]Comment: 16 pages, 12 colour figures. To be published in MNRAS. Catalogue available from the first author. Full resolution copy available here http://lee.spitler.googlepages.com/spitzer_spitler.pd

    Evidence for the disky origin of luminous Virgo dwarf ellipticals from the kinematics of their globular cluster systems

    Full text link
    We report evidence for dynamically significant rotation in the globular cluster systems of two luminous Virgo dwarf ellipticals, VCC1261 and VCC1528. Including previous results for VCC1087, the globular cluster systems of all three Virgo dwarf ellipticals studied in detail to date exhibit v_rot/sigma > 1. Taking the rotation seen in the globular clusters as maximal disk rotation, we find all three dEs lie on the r-band Tully-Fisher relation. We argue that these data support the hypothesis that luminous dEs are the remnants of transformed disk galaxies. We also obtained deep, longslit data for the stars in VCC1261 and VCC1528. Both these galaxies show rapid rotation in their inner regions, with spatial scales of ~0.5 kpc. These rotation velocities are similar to those seen in the GC systems. Since our longslit data for Virgo dEs extend out to 1-2 effective radii (typical of deep observations), whereas the globular clusters extend out to 4--7 effective radii, we conclude that non-detections of rotation in many luminous dEs may simply be due to a lack of radial coverage in the stellar data, and that globular clusters represent singularly sensitive probes of the dynamics of dEs. Based on these data, we suggest that gas disks are significant sites of globular cluster formation in the early universe.Comment: To appear in the AJ, corrected typographical errors in Table 1, added a referenc

    Young LMC clusters: the role of red supergiants and multiple stellar populations in their integrated light and CMDs

    Get PDF
    The optical integrated spectra of three LMC young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyze deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses including age-spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can only be reproduced by modeling an increased fraction of about 20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule-out the presence of Myr age-spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination can we better understand the cluster stellar populations.Comment: Accepted for publication in MNRA

    UBRI Photometry of Globular Clusters in the Leo Group Galaxy NGC 3379

    Full text link
    We present wide area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B-band magnitudes and their (U-B)o vs (B-I)o colours. A colour-colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates which, supports previous claims of a low specific frequency for NGC 3379. The Milky Way and M31 reveal blue and red subpopulations, with (U-B)o and (B-I)o colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston (2003) and Brocato etal (2000) are consistent with both subpopulations being old, and with metallicities of [Fe/H] \~ -1.5 and -0.6 for the blue and red subpopulations respectively. The models of Worthey (1994) do not reproduce the (U-B)o colours of the red (metal-rich) subpopulation for any modelled age. For NGC 3379 we detect a blue subpopulation with similar colours and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H] ~ -0.6.Comment: 12 pages, Latex, 10 figures, 1 table, submitted for publication in MNRAS, Fig. 11 available in source file or from [email protected]

    Dynamical evolution of globular cluster systems in clusters of galaxies I. The case of NGC 1404 in the Fornax cluster

    Full text link
    We investigate, via numerical simulations, the tidal stripping and accretion of globular clusters (GCs). In particular, we focus on creating models that simulate the situation for the GC systems of NGC 1404 and NGC 1399 in the Fornax cluster, which have poor (specific frequency SNS_{\rm N} ∼\sim 2) and rich (SNS_{\rm N} ∼\sim 10) GC systems respectively. We initially assign NGC 1404 in our simulation a typical SNS_{\rm N} (∼\sim 5) for cluster ellipticals, and find that its GC system can only be reduced through stripping to the presently observed value, if its orbit is highly eccentric (with orbital eccentricity of >> 0.5) and if the initial scale length of the GCs system is about twice as large as the effective radius of NGC 1404 itself. These stripped GCs can be said to have formed a `tidal stream' of intracluster globular clusters (ICGCs) orbiting the centre of Fornax cluster (many of which would be assigned to NGC 1399 in an imaging study). The physical properties of these GCs (e.g., number, radial distribution) depend on the orbit and initial distribution of GCs in NGC 1404. Our simulations also predict a trend for SNS_{\rm N} to rise with increasing clustercentric distance - a trend for which there is some observational support in the Fornax cluster.Comment: 12 pages 12 figures, MNRAS in pres

    Keck Spectroscopy and Imaging of Globular Clusters in the Lenticular Galaxy NGC 524

    Full text link
    We have obtained Keck LRIS imaging and spectra for 29 globular clusters associated with the lenticular galaxy NGC 524. Using the empirical calibration of Brodie & Huchra we find that our spectroscopic sample spans a metallicity range of --2.0 < [Fe/H] < 0. We have compared the composite spectrum of the metal-poor ([Fe/H] < --1) and metal-rich clusters with stellar population models and conclude that the clusters are generally old and coeval at the 2 sigma confidence level. To determine the mean [alpha/Fe] ratios of the globular clusters, we have employed the Milone et al. 'alpha-enhanced' stellar population models. We verified the reliability of these models by comparing them with high S/N Galactic globular cluster data. We observe a weak trend of decreasing [alpha/Fe] with increasing metallicity in the NGC 524 clusters. Analysis of the cluster system kinematics reveals that the full sample exhibits a rotation of 114+/-60 km/s around a position angle of 22+/-27 deg, and a velocity dispersion of 186+/-29 km/s at a mean radius of 89 arcsec from the galaxy centre. Subdividing the clusters into metal-poor and metal-rich subcomponents we find that the metal-poor (17) clusters and metal-rich (11) clusters have similar velocity dispersions (197+/-40 km/s and 169+/-47 km/s respectively). The metal-poor clusters dominate the rotation in our sample with 147+/-75 km/s, whilst the metal-rich clusters show no significant rotation (68+/-84 km/s). We derive a virial and projected mass estimation for NGC 524 of between 4 and 13 x 10^11 Msun (depending on the assumed orbital distribution) interior to 2 effective radii of this galaxy.Comment: to appear in MNRA
    • …
    corecore