107 research outputs found

    Understanding the diversity of 21 cm cosmology analyses

    Get PDF
    21 cm power spectrum observations have the potential to revolutionize our understanding of the epoch of reionization and dark energy, but require extraordinarily precise data analysis methods to separate the cosmological signal from the astrophysical and instrumental contaminants. This analysis challenge has led to a diversity of proposed analyses, including delay spectra, imaging power spectra, m-mode analysis, and numerous others. This diversity of approach is a strength, but has also led to a confusion within the community about whether insights gleaned by one group are applicable to teams working in different analysis frameworks. In this paper, we show that all existing analysis proposals can be classified into two distinct families based on whether they estimate the power spectrum of the measured or reconstructed sky. This subtle difference in the statistical question posed largely determines the susceptibility of the analyses to foreground emission and calibration errors, and ultimately the science different analyses can pursue. In this paper, we detail the origin of the two analysis families, categorize the analyses being actively developed, and explore their relative sensitivities to foreground contamination and calibration errors.National Science Foundation (NSF) [1613855, 1613040, 1506024, 1636646]; National Aeronautivcal and Space Administration [80NSSC18K0389]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [1701440]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Measurements of one-point statistics in 21 cm intensity maps via foreground avoidance strategy

    Get PDF
    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21 cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during reionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21 cm one-point statistics through a foreground avoidance strategy. Leveraging the well-known characteristic of foreground contamination in which it occupies a wedge-shape region in k-space, we apply a foreground wedge-cut filter that removes the contaminated modes from a mock data set based on the Hydrogen Epoch of Reionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with wedge-cutting over different frequency bandwidths and varying degrees of removal that correspond to different assumptions on the extent of the foreground sources on the sky and leakage from the Fourier Transform window function. We find that the centre of the band is the least biased from wedge-cutting while the edges of the band are unusable due to being highly down-weighted by the window function. Based on this finding, we introduce a rolling filter method that allows reconstruction of an optimal wedge-cut 21~cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the rise in skewness and kurtosis near the end of reionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.Comment: 12 pages, 8 figures, submitted to MNRA

    The Completely Hackable Amateur Radio Telescope (CHART) Project

    Full text link
    We present the Completely Hackable Amateur Radio Telescope (CHART), a project that provides hands-on radio instrumentation and design experience to undergraduates while bringing accessible radio astronomy experiments to high school students and teachers. Here we describe a system which can detect 21-cm emission from the Milky Way which is optimized for cost and simplicity of construction. Software, documentation, and tutorials are all completely open source to improve the user experience and facilitate community involvement. We demonstrate the design with several observations which we compare with state-of-the-art surveys. The system is shown to detect galactic 21-cm emission in both rural and urban settings
    • …
    corecore