6 research outputs found
Duality Cascade in Brane Inflation
We show that brane inflation is very sensitive to tiny sharp features in
extra dimensions, including those in the potential and in the warp factor. This
can show up as observational signatures in the power spectrum and/or
non-Gaussianities of the cosmic microwave background radiation (CMBR). One
general example of such sharp features is a succession of small steps in a
warped throat, caused by Seiberg duality cascade using gauge/gravity duality.
We study the cosmological observational consequences of these steps in brane
inflation. Since the steps come in a series, the prediction of other steps and
their properties can be tested by future data and analysis. It is also possible
that the steps are too close to be resolved in the power spectrum, in which
case they may show up only in the non-Gaussianity of the CMB temperature
fluctuations and/or EE polarization. We study two cases. In the slow-roll
scenario where steps appear in the inflaton potential, the sensitivity of brane
inflation to the height and width of the steps is increased by several orders
of magnitude comparing to that in previously studied large field models. In the
IR DBI scenario where steps appear in the warp factor, we find that the
glitches in the power spectrum caused by these sharp features are generally
small or even unobservable, but associated distinctive non-Gaussianity can be
large. Together with its large negative running of the power spectrum index,
this scenario clearly illustrates how rich and different a brane inflationary
scenario can be when compared to generic slow-roll inflation. Such distinctive
stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig
Reconstructing Single Field Inflationary Actions From CMBR Data
This paper describes a general program for deriving the action of single
field inflation models with nonstandard kinetic energy terms using CMBR power
spectrum data. This method assumes that an action depends on a set of
undetermined functions, each of which is a function of either the inflaton wave
function or its time derivative. The scalar, tensor and non-gaussianity of the
curvature perturbation spectrum are used to derive a set of reconstruction
equations whose solution set can specify up to three of the undetermined
functions. The method is then used to find the undetermined functions in
various types of actions assuming power law type scalar and tensor spectra. In
actions that contain only two unknown functions, the third reconstruction
equation implies a consistency relation between the non-gaussianty, sound speed
and slow roll parameters. In particular we focus on reconstructing a
generalized DBI action with an unknown potential and warp factor. We find that
for realistic scalar and tensor spectra, the reconstructed warp factor and
potential are very similar to the theoretically derived result. Furthermore,
physical consistency of the reconstructed warp factor and potential imposes
strict constraints on the scalar and tensor spectral indices.Comment: 33 pages, 3 figures: v3 - References adde
Curvaton Dynamics and the Non-Linearity Parameters in Curvaton Model
We investigate the curvaton dynamics and the non-linearity parameters in
curvaton model with potential slightly deviating from the quadratic form in
detail. The non-linearity parameter will show up due to the curvaton
self-interaction. We also point out that the leading order of non-quadratic
term in the curvaton potential can be negative, for example in the axion-type
curvaton model. If a large positive is detected, the axion-type
curvaton model will be preferred.Comment: 14 pages, 4 figures; refs adde
Curvaton with Polynomial Potential
In general a weakly self-interacting curvaton field is expected and the
curvaton potential takes the polynomial form. The curvaton potential can be
dominated by the self-interaction term during the period of inflation if the
curvaton field stays at a large vacuum expectation value. We use the formalism to calculate the primordial curvature perturbation in the
various possible scenarios which make the curvaton model much richer.Comment: 18 pages; a mistake in sec.2.2.2 corrected, enhancement of
in the mixed scenarion discussed, version for publication in JCA
Generation and Characterization of Large Non-Gaussianities in Single Field Inflation
Inflation driven by a single, minimally coupled, slowly rolling field
generically yields a negligible primordial non-Gaussianity. We discuss two
distinct mechanisms by which a non-trivial potential can generate large
non-Gaussianities. Firstly, if the inflaton traverses a feature in the
potential, or if the inflationary phase is short enough so that initial
transient contributions to the background dynamics have not been erased, modes
near horizon-crossing can acquire significant non-Gaussianities. Secondly,
potentials with small-scale structure may induce significant non-Gaussianities
while the relevant modes are deep inside the horizon. The first case includes
the "step" potential we previously analyzed while the second "resonance" case
is novel. We derive analytic approximations for the 3-point terms generated by
both mechanisms written as products of functions of the three individual
momenta, permitting the use of efficient analysis algorithms. Finally, we
present a significantly improved approach to regularizing and numerically
evaluating the integrals that contribute to the 3-point function.Comment: 29 pp, 8 fig
Gravitational wave constraints on multi-brane inflation
A class of non-canonical inflationary models is identified, where the
leading-order contribution to the non-Gaussianity of the curvature perturbation
is determined by the sound speed of the fluctuations in the inflaton field.
Included in this class of models is the effective action for multiple
coincident branes in the finite n limit. The action for this configuration is
determined using a powerful iterative technique, based upon the fundamental
representation of SU(2). In principle the upper bounds on the tensor-scalar
ratio that arise in the standard, single-brane DBI inflationary scenario can be
relaxed in such multi-brane configurations if a large and detectable
non-Gaussianity is generated. Moreover models with a small number of coincident
branes could generate a gravitational wave background that will be observable
to future experiments.Comment: 18 pages, uses iopart.sty; v2: added references, version as published
in JCA