8,420 research outputs found

    Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBa2_2Cu3_3O7x_{7-x} Superconductor

    Full text link
    We report planar tunneling measurements on thin films of YBa2_2Cu3_3O7x_{7-x} at various doping levels under magnetic fields. By choosing a special setup configuration, we have probed a field induced energy scale that dominates in the vicinity of a node of the d-wave superconducting order parameter. We found a high doping sensitivity for this energy scale. At Optimum doping this energy scale is in agreement with an induced idxyid_{xy} order parameter. We found that it can be followed down to low fields at optimum doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Avoidability of formulas with two variables

    Full text link
    In combinatorics on words, a word ww over an alphabet Σ\Sigma is said to avoid a pattern pp over an alphabet Δ\Delta of variables if there is no factor ff of ww such that f=h(p)f=h(p) where h:ΔΣh:\Delta^*\to\Sigma^* is a non-erasing morphism. A pattern pp is said to be kk-avoidable if there exists an infinite word over a kk-letter alphabet that avoids pp. We consider the patterns such that at most two variables appear at least twice, or equivalently, the formulas with at most two variables. For each such formula, we determine whether it is 22-avoidable, and if it is 22-avoidable, we determine whether it is avoided by exponentially many binary words

    Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    Get PDF
    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    The dynamical viability of scalar-tensor gravity theories

    Full text link
    We establish the dynamical attractor behavior in scalar-tensor theories of dark energy, providing a powerful framework to analyze classes of theories, predicting common evolutionary characteristics that can be compared against cosmological constraints. In the Jordan frame the theories are viewed as a coupling between a scalar field, \Phi, and the Ricci scalar, R, F(\Phi)R. The Jordan frame evolution is described in terms of dynamical variables m \equiv d\ln F/d\ln \Phi and r \equiv -\Phi F/f, where F(\Phi) = d f(\Phi)/d\Phi. The evolution can be alternatively viewed in the Einstein frame as a general coupling between scalar dark energy and matter, \beta. We present a complete, consistent picture of evolution in the Einstein and Jordan frames and consider the conditions on the form of the coupling F and \beta required to give the observed cold dark matter (CDM) dominated era that transitions into a late time accelerative phase, including transitory accelerative eras that have not previously been investigated. We find five classes of evolutionary behavior of which four are qualitatively similar to those for f(R) theories (which have \beta=1/2). The fifth class exists only for |\beta| < \sqrt{3}/4, i.e. not for f(R) theories. In models giving transitory late time acceleration, we find a viable accelerative region of the (r,m) plane accessible to scalar-tensor theories with any coupling, \beta (at least in the range |\beta| \leq 1/2, which we study in detail), and an additional region open only to theories with |\beta| < \sqrt{3}/4.Comment: 24 pages, 3 figure

    3D simulations of M star atmosphere velocities and their influence on molecular FeH lines

    Full text link
    We present an investigation of the velocity fields in early to late M-type star hydrodynamic models, and we simulate their influence on FeH molecular line shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K and 4000 K. Our aim is to characterize the Teff- and log g -dependence of the velocity fields and express them in terms of micro- and macro-turbulent velocities in the one dimensional sense. We present also a direct comparison between 3D hydrodynamical velocity fields and 1D turbulent velocities. The velocity fields strongly affect the line shapes of FeH, and it is our goal to give a rough estimate for the log g and Teff parameter range in which 3D spectral synthesis is necessary and where 1D synthesis suffices. In order to calculate M-star structure models we employ the 3D radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these models is performed with the line synthesis code LINFOR3D. We describe the 3D velocity fields in terms of a Gaussian standard deviation and project them onto the line of sight to include geometrical and limb-darkening effects. The micro- and macro-turbulent velocities are determined with the "Curve of Growth" method and convolution with a Gaussian velocity profile, respectively. To characterize the log g and Teff dependence of FeH lines, the equivalent width, line width, and line depth are regarded. The velocity fields in M-stars strongly depend on log g and Teff. They become stronger with decreasing log g and increasing Teff.Comment: 14 pages, 17 figures, 3 tables, accepted by Astronomy & Astrophysic

    Chronic Pancreatitis and Neoplasia: Correlation or Coincidence

    Get PDF
    Any link between pancreatic carcinoma and chronic pancreatitis could reflect the malignant potential of a chronic inflammatory process. Four patients with ductal adenocarcinomas had a long history of pancreatic pain (median duration 5 years) and showed clearcut evidence of chronic pancreatitis “downstream” of the tumour. Four were alcoholics and two heavy smokers. These four cases arose within a surgical series of approximately 250 patients with chronic pancreatitis, giving an incidence of 1.6 per cent. The incidence and anatomical distribution of carcinoma and chronic pancreatitis could possibly be consistent with a casual relationship

    The Transiting Exoplanet Community Early Release Science Program for JWST

    Get PDF
    The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, timeseries observations required for such investigations have unique technical challenges, and prior experience with Hubble, Spitzer, and other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper, we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. We also describe the simulations used to establish the program. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative data sets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the timeseries modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. The targets have been vetted with previous measurements, will be observable early in the mission, and have exceptional scientific merit. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, timeseries instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission

    Delayed Recombination and Standard Rulers

    Full text link
    Measurements of Baryonic Acoustic Oscillations in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from Cosmic Microwave Background Anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as BOSS and WFMOS. We find the impact to be small but still not negligible. In particular, if recombination is non-standard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination, does not significantly degrade the error-bars on dark energy parameters and yields unbiased estimates.Comment: 8 pages, 5 figure

    A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors

    Full text link
    We consider the Bean's critical state model for anisotropic superconductors. A variational problem solved by the quasi--static evolution of the internal magnetic field is obtained as the Γ\Gamma-limit of functionals arising from the Maxwell's equations combined with a power law for the dissipation. Moreover, the quasi--static approximation of the internal electric field is recovered, using a first order necessary condition. If the sample is a long cylinder subjected to an axial uniform external field, the macroscopic electrodynamics is explicitly determined.Comment: 24 pages, 15 figure
    corecore