394 research outputs found
Letter from Abraham Beame, former Mayor of New York, to Geraldine Ferraro
Congratulatory letter from Abraham Beame, former Mayor of New York City, to Geraldine Ferraro. Includes standard response letter and a data entry sheet.https://ir.lawnet.fordham.edu/vice_presidential_campaign_correspondence_1984_new_york/1269/thumbnail.jp
Element Distinctness, Frequency Moments, and Sliding Windows
We derive new time-space tradeoff lower bounds and algorithms for exactly
computing statistics of input data, including frequency moments, element
distinctness, and order statistics, that are simple to calculate for sorted
data. We develop a randomized algorithm for the element distinctness problem
whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than
previous lower bounds for comparison-based algorithms, showing that element
distinctness is strictly easier than sorting for randomized branching programs.
This algorithm is based on a new time and space efficient algorithm for finding
all collisions of a function f from a finite set to itself that are reachable
by iterating f from a given set of starting points. We further show that our
element distinctness algorithm can be extended at only a polylogarithmic factor
cost to solve the element distinctness problem over sliding windows, where the
task is to take an input of length 2n-1 and produce an output for each window
of length n, giving n outputs in total. In contrast, we show a time-space
tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to
compute the number of distinct elements over sliding windows. The same lower
bound holds for computing the low-order bit of F_0 and computing any frequency
moment F_k, k neq 1. This shows that those frequency moments and the decision
problem F_0 mod 2 are strictly harder than element distinctness. We complement
this lower bound with a T in O(n^2/S) comparison-based deterministic RAM
algorithm for exactly computing F_k over sliding windows, nearly matching both
our lower bound for the sliding-window version and the comparison-based lower
bounds for the single-window version. We further exhibit a quantum algorithm
for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider
the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437
Worst-Case Optimal Algorithms for Parallel Query Processing
In this paper, we study the communication complexity for the problem of
computing a conjunctive query on a large database in a parallel setting with
servers. In contrast to previous work, where upper and lower bounds on the
communication were specified for particular structures of data (either data
without skew, or data with specific types of skew), in this work we focus on
worst-case analysis of the communication cost. The goal is to find worst-case
optimal parallel algorithms, similar to the work of [18] for sequential
algorithms.
We first show that for a single round we can obtain an optimal worst-case
algorithm. The optimal load for a conjunctive query when all relations have
size equal to is , where is a new query-related
quantity called the edge quasi-packing number, which is different from both the
edge packing number and edge cover number of the query hypergraph. For multiple
rounds, we present algorithms that are optimal for several classes of queries.
Finally, we show a surprising connection to the external memory model, which
allows us to translate parallel algorithms to external memory algorithms. This
technique allows us to recover (within a polylogarithmic factor) several recent
results on the I/O complexity for computing join queries, and also obtain
optimal algorithms for other classes of queries
Communication Steps for Parallel Query Processing
We consider the problem of computing a relational query on a large input
database of size , using a large number of servers. The computation is
performed in rounds, and each server can receive only
bits of data, where is a parameter that controls
replication. We examine how many global communication steps are needed to
compute . We establish both lower and upper bounds, in two settings. For a
single round of communication, we give lower bounds in the strongest possible
model, where arbitrary bits may be exchanged; we show that any algorithm
requires , where is the fractional vertex
cover of the hypergraph of . We also give an algorithm that matches the
lower bound for a specific class of databases. For multiple rounds of
communication, we present lower bounds in a model where routing decisions for a
tuple are tuple-based. We show that for the class of tree-like queries there
exists a tradeoff between the number of rounds and the space exponent
. The lower bounds for multiple rounds are the first of their
kind. Our results also imply that transitive closure cannot be computed in O(1)
rounds of communication
Model Counting of Query Expressions: Limitations of Propositional Methods
Query evaluation in tuple-independent probabilistic databases is the problem
of computing the probability of an answer to a query given independent
probabilities of the individual tuples in a database instance. There are two
main approaches to this problem: (1) in `grounded inference' one first obtains
the lineage for the query and database instance as a Boolean formula, then
performs weighted model counting on the lineage (i.e., computes the probability
of the lineage given probabilities of its independent Boolean variables); (2)
in methods known as `lifted inference' or `extensional query evaluation', one
exploits the high-level structure of the query as a first-order formula.
Although it is widely believed that lifted inference is strictly more powerful
than grounded inference on the lineage alone, no formal separation has
previously been shown for query evaluation. In this paper we show such a formal
separation for the first time.
We exhibit a class of queries for which model counting can be done in
polynomial time using extensional query evaluation, whereas the algorithms used
in state-of-the-art exact model counters on their lineages provably require
exponential time. Our lower bounds on the running times of these exact model
counters follow from new exponential size lower bounds on the kinds of d-DNNF
representations of the lineages that these model counters (either explicitly or
implicitly) produce. Though some of these queries have been studied before, no
non-trivial lower bounds on the sizes of these representations for these
queries were previously known.Comment: To appear in International Conference on Database Theory (ICDT) 201
- …