94 research outputs found
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
Grant Application: Health Practitioners’ Perspective On Caring For Older Adults In Rural Maine – A Pilot Study
IPEC Mini-grant application for funding of UNE student project Health Practioners’ Perspective on Caring for Older Adults in Rural Maine. This pilot study was designed to identify challenges and determine potential solutions for Maine practitioners delivering health care to rural Maine’s aging population. UNE students from several healthcare professions partnered to interview physicians, physician assistants, nurse practitioners, social workers, occupational therapists, and physical therapists caring for community-dwelling older adults in Rural Maine. The student researchers then analyzed the interviews and identified themes.https://dune.une.edu/minigrant_hppoa/1000/thumbnail.jp
SLR Station Recovery, Center of Frame Motion, and Time Varying Gravity
Weekly station position estimates, beginning with 1993, are derived from the ITRF2008-based SLR processing of up to four satellites: Lageos 1, Lageos2, Starlette, and Stella. Helmert parameters obtained from c omparison of weekly SLR station positions and the a-priori SLRF2008 station complement are evaluated for geocenter motion and scale. Two me thods for modeling time varying gravity are employed in the SLR satel lite POD processing, with GGM03S serving as the static gravity field. Both methods forward model atmosphere gravity derived from 6-hour ECM WF pressure data. The standard approach applies an annual 20x20 field estimated from 4 years of GRACE data, and the IERS2003 recommended linear rates for C20, C30, C40, C21, and S21. The alternate approach us es a new set of low-order/degree 4x4 coefficients estimated weekly fr om SLR & DORIS processing to 10 satellites from 1993-2012. This exper imental tvg4x4 model has been shown to improve the TOPEX, Jason-1, and Jason-2 altimeter satellite orbits,. In this paper we apply the more detailed time-variable gravity modeling to the SLR satellite POD pro cessing and subsequent reference frame analyses. For this study we will evaluate the orbit differences (periodic and secular) for the satel lites concerned, characterize the impact on the station coordinate solutions, and the impact on reference frame parameters (geocenter and s cale)
Design Considerations for Factorial Adaptive Multi-Arm Multi-Stage (FAST) Clinical Trials
Multi-Arm, Multi-Stage (MAMS) clinical trial designs allow for multiple
therapies to be compared across a spectrum of clinical trial phases. MAMS
designs can be categorized into several overarching design groups, including
adaptive designs (AD) and multi-arm (MA) designs. Factorial clinical trials
designs represent an additional group of designs which can provide increased
efficiency relative to fixed, traditional designs. In this work, we explore
design choices associated with Factorial Adaptive Multi-Arm Multi-Stage (FAST)
designs, which represent the combination of factorial and MAMS designs. This
category of trial can potentially offer benefits similar to both MAMS and
factorial designs. This work is motivated by a proposed clinical trial under
development
Invasive Group A Streptococcal Disease in Nursing Homes, Minnesota, 1995–2006
Nursing home residents are at high risk for invasive GAS disease; clusters are common
Responsible, Safe, and Effective Use of Biologics in the Management of Low Back Pain: American Society of Interventional Pain Physicians (ASIPP) Guidelines
BACKGROUND: Regenerative medicine is a medical subspecialty that seeks to recruit and enhance the body\u27s own inherent healing armamentarium in the treatment of patient pathology. This therapy\u27s intention is to assist in the repair, and to potentially replace or restore damaged tissue through the use of autologous or allogenic biologics. This field is rising like a Phoenix from the ashes of underperforming conventional therapy midst the hopes and high expectations of patients and medical personnel alike. But, because this is a relatively new area of medicine that has yet to substantiate its outcomes, care must be taken in its public presentation and promises as well as in its use.
OBJECTIVE: To provide guidance for the responsible, safe, and effective use of biologic therapy in the lumbar spine. To present a template on which to build standardized therapies using biologics. To ground potential administrators of biologics in the knowledge of the current outcome statistics and to stimulate those interested in providing biologic therapy to participate in high quality research that will ultimately promote and further advance this area of medicine.
METHODS: The methodology used has included the development of objectives and key questions. A panel of experts from various medical specialties and subspecialties as well as differing regions collaborated in the formation of these guidelines and submitted (if any) their appropriate disclosures of conflicts of interest. Trustworthy standards were employed in the creation of these guidelines. The literature pertaining to regenerative medicine, its effectiveness, and adverse consequences was thoroughly reviewed using a best evidence synthesis of the available literature. The grading for recommendation was provided as described by the Agency for Healthcare Research and Quality (AHRQ).
SUMMARY OF EVIDENCE: Lumbar Disc Injections: Based on the available evidence regarding the use of platelet-rich plasma (PRP), including one high-quality randomized controlled trial (RCT), multiple moderate-quality observational studies, a single-arm meta-analysis and evidence from a systematic review, the qualitative evidence has been assessed as Level III (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best-evidence synthesis. Based on the available evidence regarding the use of medicinal signaling/ mesenchymal stem cell (MSCs) with a high-quality RCT, multiple moderate-quality observational studies, a single-arm meta-analysis, and 2 systematic reviews, the qualitative evidence has been assessed as Level III (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best evidence synthesis. Lumbar Epidural Injections Based on one high-quality RCT, multiple relevant moderate-quality observational studies and a single-arm meta-analysis, the qualitative evidence has been assessed as Level IV (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best evidence synthesis. Lumbar Facet Joint Injections Based on one high-quality RCT and 2 moderate-quality observational studies, the qualitative evidence for facet joint injections with PRP has been assessed as Level IV (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best evidence synthesis. Sacroiliac Joint Injection Based on one high-quality RCT, one moderate-quality observational study, and one low-quality case report, the qualitative evidence has been assessed as Level IV (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best evidence synthesis.
CONCLUSION: Based on the evidence synthesis summarized above, there is Level III evidence for intradiscal injections of PRP and MSCs, whereas the evidence is considered Level IV for lumbar facet joint, lumbar epidural, and sacroiliac joint injections of PRP, (on a scale of Level I through V) using a qualitative modified approach to the grading of evidence based on best evidence synthesis.Regenerative therapy should be provided to patients following diagnostic evidence of a need for biologic therapy, following a thorough discussion of the patient\u27s needs and expectations, after properly educating the patient on the use and administration of biologics and in full light of the patient\u27s medical history. Regenerative therapy may be provided independently or in conjunction with other modalities of treatment including a structured exercise program, physical therapy, behavioral therapy, and along with the appropriate conventional medical therapy as necessary. Appropriate precautions should be taken into consideration and followed prior to performing biologic therapy. Multiple guidelines from the Food and Drug Administration (FDA), potential limitations in the use of biologic therapy and the appropriate requirements for compliance with the FDA have been detailed in these guidelines.
KEY WORDS: Regenerative medicine, platelet-rich plasma, medicinal signaling cells, mesenchymal stem cells, stromal vascular fraction, bone marrow concentrate, chronic low back pain, discogenic pain, facet joint pain, Food and Drug Administration, minimal manipulation, evidence synthesis
The Balloon-Borne Large Aperture Submillimeter Telescope Observatory
The BLAST Observatory is a proposed superpressure balloon-borne polarimeter
designed for a future ultra-long duration balloon campaign from Wanaka, New
Zealand. To maximize scientific output while staying within the stringent
superpressure weight envelope, BLAST will feature new 1.8m off-axis optical
system contained within a lightweight monocoque structure gondola. The payload
will incorporate a 300L He cryogenic receiver which will cool 8,274
microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an
adiabatic demagnetization refrigerator (ADR) in combination with a He
sorption refrigerator all backed by a liquid helium pumped pot operating at 2K.
The detector readout utilizes a new Xilinx RFSOC-based system which will run
the next-generation of the BLAST-TNG KIDPy software. With this instrument we
aim to answer outstanding questions about dust dynamics as well as provide
community access to the polarized submillimeter sky made possible by
high-altitude observing unrestricted by atmospheric transmission. The BLAST
Observatory is designed for a minimum 31-day flight of which 70 will be
dedicated to observations for BLAST scientific goals and the remaining 30
will be open to proposals from the wider astronomical community through a
shared-risk proposals program.Comment: Presented at SPIE Ground-based and Airborne Telescopes VIII, December
13-18, 202
The BLAST Observatory: A sensitivity study for far-IR balloon-borne polarimeters
Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum—wavelengths that are inaccessible from the ground. In this paper we address the sensitivity achievable by a Super Pressure Balloon polarimetry mission, using as an example the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) Observatory. By launching from Wanaka, New Zealand, the BLAST Observatory can obtain a 30 days flight with excellent sky coverage—overcoming limitations of past experiments that suffered from short flight duration and/or launch sites with poor coverage of nearby star-forming regions. This proposed polarimetry mission will map large regions of the sky at sub-arcminute resolution, with simultaneous observations at 175, 250, and 350 μm, using a total of 8274 microwave kinetic inductance detectors. Here, we describe the scientific motivation for the BLAST Observatory, the proposed implementation, and the forecasting methods used to predict its sensitivity. We also compare our forecasted experiment sensitivity with other facilities
Thermoregulation of Capsule Production by Streptococcus pyogenes
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface
- …