105 research outputs found
A blowup criterion for ideal viscoelastic flow
We establish an analog of the Beale-Kato-Majda criterion for singularities of
smooth solutions of the system of PDE arising in the Oldroyd model for ideal
viscoelastic flow
A lower bound on blowup rates for the 3D incompressible Euler equation and a single exponential Beale-Kato-Majda type estimate
We prove a Beale-Kato-Majda type criterion for the loss of regularity for
solutions of the incompressible Euler equations in , for
. Instead of double exponential estimates of Beale-Kato-Majda type,
we obtain a single exponential bound on involving the length
parameter introduced by P. Constantin in \cite{co1}. In particular, we derive
lower bounds on the blowup rate of such solutions.Comment: AMS Latex, 15 page
Generalized Euler-Poincar\'e equations on Lie groups and homogeneous spaces, orbit invariants and applications
We develop the necessary tools, including a notion of logarithmic derivative
for curves in homogeneous spaces, for deriving a general class of equations
including Euler-Poincar\'e equations on Lie groups and homogeneous spaces.
Orbit invariants play an important role in this context and we use these
invariants to prove global existence and uniqueness results for a class of PDE.
This class includes Euler-Poincar\'e equations that have not yet been
considered in the literature as well as integrable equations like Camassa-Holm,
Degasperis-Procesi, CH and DP equations, and the geodesic equations
with respect to right invariant Sobolev metrics on the group of diffeomorphisms
of the circle
On Breakdown Criteria for Nonvacuum Einstein Equations
The recent "breakdown criterion" result of S. Klainerman and I. Rodnianski
stated roughly that an Einstein-vacuum spacetime, given as a CMC foliation, can
be further extended in time if the second fundamental form and the derivative
of the lapse of the foliation are uniformly bounded. This theorem and its proof
were extended to Einstein-scalar and Einstein-Maxwell spacetimes in the
author's Ph.D. thesis. In this paper, we state the main results of the thesis,
and we summarize and discuss their proofs. In particular, we will discuss the
various issues resulting from nontrivial Ricci curvature and the coupling
between the Einstein and the field equations.Comment: 62 pages This version: corrected minor typos, expanded Section 6
(geometry of null cones
Well-posedness of the Ericksen-Leslie system
In this paper, we prove the local well-posedness of the Ericksen-Leslie
system, and the global well-posednss for small initial data under the physical
constrain condition on the Leslie coefficients, which ensures that the energy
of the system is dissipated. Instead of the Ginzburg-Landau approximation, we
construct an approximate system with the dissipated energy based on a new
formulation of the system.Comment: 16 page
On Singularity Formation of a Nonlinear Nonlocal System
We investigate the singularity formation of a nonlinear nonlocal system. This
nonlocal system is a simplified one-dimensional system of the 3D model that was
recently proposed by Hou and Lei in [13] for axisymmetric 3D incompressible
Navier-Stokes equations with swirl. The main difference between the 3D model of
Hou and Lei and the reformulated 3D Navier-Stokes equations is that the
convection term is neglected in the 3D model. In the nonlocal system we
consider in this paper, we replace the Riesz operator in the 3D model by the
Hilbert transform. One of the main results of this paper is that we prove
rigorously the finite time singularity formation of the nonlocal system for a
large class of smooth initial data with finite energy. We also prove the global
regularity for a class of smooth initial data. Numerical results will be
presented to demonstrate the asymptotically self-similar blow-up of the
solution. The blowup rate of the self-similar singularity of the nonlocal
system is similar to that of the 3D model.Comment: 28 pages, 9 figure
On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces
In this paper, we prove the local well-posedness for the Ideal MHD equations
in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth
solutions. Specially, we fill a gap in a step of the proof of the local
well-posedness part for the incompressible Euler equation in \cite{Chae1}.Comment: 16page
Nonexistence of self-similar singularities for the 3D incompressible Euler equations
We prove that there exists no self-similar finite time blowing up solution to
the 3D incompressible Euler equations. By similar method we also show
nonexistence of self-similar blowing up solutions to the divergence-free
transport equation in . This result has direct applications to the
density dependent Euler equations, the Boussinesq system, and the
quasi-geostrophic equations, for which we also show nonexistence of
self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of
compact support for the vorticit
The Beale-Kato-Majda criterion to the 3D Magneto-hydrodynamics equations
We study the blow-up criterion of smooth solutions to the 3D MHD equations.
By means of the Littlewood-Paley decomposition, we prove a Beale-Kato-Majda
type blow-up criterion of smooth solutions via the vorticity of velocity only,
i. e. \sup_{j\in\Z}\int_0^T\|\Delta_j(\na\times u)\|_\infty dt, where
is a frequency localization on .Comment: 12page
Blow up criterion for compressible nematic liquid crystal flows in dimension three
In this paper, we consider the short time strong solution to a simplified
hydrodynamic flow modeling the compressible, nematic liquid crystal materials
in dimension three. We establish a criterion for possible breakdown of such
solutions at finite time in terms of the temporal integral of both the maximum
norm of the deformation tensor of velocity gradient and the square of maximum
norm of gradient of liquid crystal director field.Comment: 22 page
- …