42 research outputs found

    Registration of ‘LCS Compass’ Wheat

    Get PDF
    ‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (Triticum aestivum L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (Rht1) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha−1 that was similar to ‘Vision 30’ (4697 kg ha−1). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha−1) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha−1). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha−1 and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States

    Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering

    Get PDF
    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites
    corecore