29 research outputs found
Registration of ‘LCS Compass’ Wheat
‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (Triticum aestivum L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (Rht1) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha−1 that was similar to ‘Vision 30’ (4697 kg ha−1). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha−1) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha−1). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha−1 and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States
Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites
Connexin channels and phospholipids: association and modulation
<p>Abstract</p> <p>Background</p> <p>For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.</p> <p>Results</p> <p>Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.</p> <p>Conclusion</p> <p>This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.</p
Recommended from our members
Potential effects of gallium on cladding materials
This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented
Recommended from our members
Tank waste treatment R and D activities at Oak Ridge National Laboratory
Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges
Registration of ‘LCS Compass’ Wheat
‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (Triticum aestivum L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (Rht1) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha−1 that was similar to ‘Vision 30’ (4697 kg ha−1). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha−1) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha−1). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha−1 and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States