523 research outputs found
S12RS SGB No. 8 (New Committees)
A BILL
To amend the Senate Rules of Orde
Time series prediction via aggregation : an oracle bound including numerical cost
We address the problem of forecasting a time series meeting the Causal
Bernoulli Shift model, using a parametric set of predictors. The aggregation
technique provides a predictor with well established and quite satisfying
theoretical properties expressed by an oracle inequality for the prediction
risk. The numerical computation of the aggregated predictor usually relies on a
Markov chain Monte Carlo method whose convergence should be evaluated. In
particular, it is crucial to bound the number of simulations needed to achieve
a numerical precision of the same order as the prediction risk. In this
direction we present a fairly general result which can be seen as an oracle
inequality including the numerical cost of the predictor computation. The
numerical cost appears by letting the oracle inequality depend on the number of
simulations required in the Monte Carlo approximation. Some numerical
experiments are then carried out to support our findings
Molecular Cloning and Analysis of the Tryptophan oxygenase Gene in the Silkworm, Bombyx mori
A Bombyx mori L. (Lepidoptera: Bombycidae) gene encoding tryptophan oxygenase has been molecularly cloned and analyzed. The tryptophan oxygenase cDNA had 1374 nucleotides that encoded a 401 amino acid protein with an estimated molecular mass of 46.47 kDa and a PI of 5.88. RT-PCR analysis showed that the B. mori tryptophan oxygenase gene was transcribed in all examined stages. Tryptophan oxygenase proteins are relatively well conserved among different orders of arthropods
Predicting active site residue annotations in the Pfam database
<p>Abstract</p> <p>Background</p> <p>Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family.</p> <p>Description</p> <p>We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and <it>MEROPS </it>we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives.</p> <p>Conclusion</p> <p>We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.</p
Facing others’ misfortune: Personal distress mediates the association between maladaptive emotion regulation and social avoidance
Previous research has linked the use of certain emotion regulation strategies to the vicarious experience of personal distress (PD) and empathic concern (EC). However, it has not been tested yet whether (1) vicarious PD is positively associated with maladaptive emotion regulation strategies, (2) vicarious EC is positively associated with adaptive emotion regulation strategies and whether (3) PD and EC mediate the link between emotion regulation and reports of approach/avoidance in response to a person in distress. To that aim, we assessed people’s reports of PD (i.e., anxious, troubled, and upset) and EC (i.e., concerned, sympathetic, and soft-hearted) in response to a video depicting a person in a threatening situation (n = 78). Afterwards, we assessed participants’ reports of avoidance and approach in regards to the character and their disposition to use maladaptive and adaptive emotion regulation strategies. Results showed that PD as well as EC were positively related to maladaptive strategies and negatively related to adaptive strategies, and that the association between maladaptive regulation strategies (i.e., rumination) and the willingness to avoid the person in distress was mediated by greater reports of PD. This study thus expands previous evidence on the relationship between maladaptive regulation strategies and affective empathy and provides novel insights about the main role that personal distress played in the association between maladaptive strategies and social avoidance
Tradeoff Between Stability and Multispecificity in the Design of Promiscuous Proteins
Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein, calmodulin (CaM), which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the compromise between the need for favorable interaction energies and the need for multispecificity. We observe that designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal energies. We conclude that multispecific proteins have been subjected to a rigorous optimization process that has fine-tuned their sequences for interactions with a precise set of targets, thus conferring their multiple cellular functions
Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management
Background: Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods. In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results: A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per L. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions: These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically
PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality
ABSTRACT:Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
- …