45 research outputs found

    Current-driven domain wall motion along high perpendicular anisotropy multilayers: The role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction

    Get PDF
    The current-induced domain wall motion along a thin cobalt ferromagnetic strip sandwiched in a multilayer (Pt/Co/AlO) is theoretically studied with emphasis on the roles of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction. The results point out that these ingredients, originated from the spin-orbit coupling, are consistent with recent experimental observations in three different scenarios. With the aim of clarifying which is the most plausible the influence of in-plane longitudinal and transversal fields is evaluated

    Voltage control of magnetic anisotropy in Fe films with quantum well states

    Get PDF
    The influence of a gate voltage on magnetic anisotropy is investigated in a thin Fe film epitaxially grown on a Ag(1,1,10) substrate and covered by MgO. Oscillations in step-induced magnetic anisotropy due to quantum well states (QWS) confined in the Fe film are observed and shown to persist up to room temperature at low Fe thicknesses. By systematically examining the voltage and thickness dependence of the magnetic hysteresis loop characteristics, we identify two distinct effects by which an applied voltage modifies the magnetic anisotropy. The first effect is due to voltage-induced changes to interfacial perpendicular magnetic anisotropy which, due to the vicinal geometry, leads to changes in the effective in-plane uniaxial magnetic anisotropy. A second effect is observed at lower film thicknesses and shows nonmonotonic voltage-induced effects on magnetic anisotropy. This nonmonotonic behavior coincides with the onset of significant QWS-induced effects on magnetic anisotropy and suggests a link between QWS- and voltage-induced anisotropy changes.National Science Foundation (U.S.) (Grant NSF-ECCS-1128439

    Accurate model of the stripe domain phase of perpendicularly magnetized multilayers

    Get PDF
    We develop an accurate analytical model for the stray field energy of parallel stripe domains in multilayer films with perpendicular magnetic anisotropy, taking into account the effects of finite domain wall width and variable domain wall angle. By minimizing the total energy, we predict the domain width, the domain wall width, and the domain wall angle for given material parameters. We show how the domain wall width depends on the film thickness and the domain size. We explore the domain wall angle as a function of Dzyaloshinskii-Moriya interaction (DMI) and derive a threshold value D[subscript thr] beyond which the system is in a Néel state. We find that thicker films require larger values of DMI to stabilize the Néel state. Finally, we test the effective medium theory, which allows treating multilayers as effective single layer films, and provide criteria for the applicability of the model in the presence of both surface and volume stray fields. Our results are supported by micromagnetic simulations, which indicate that the predictions are still precise even if the system is in a labyrinthine domain state. Using our model, otherwise inaccessible magnetic parameters, such as the DMI constant or the exchange constant, can now be obtained straightforwardly from static measurements of the stripe domain width in such films

    Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film

    Get PDF
    The temperature dependence of spin-orbit torques (SOTs) and spin-dependent transport parameters is measured in bilayer Ta/TbCo ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. We find that the dampinglike (DL)-SOT effective field diverges as temperature is swept through the magnetic compensation temperature (T[subscript M]), where the net magnetization vanishes due to the opposing contributions from the Tb and Co sublattices. We show that DL-SOT scales with the inverse of the saturation magnetization (M[subscript s]), whereas the spin-torque efficiency is independent of the temperature-dependent M [subscript s]. Our findings provide insight into spin transport mechanisms in ferrimagnets and highlight low-M [subscript s] rare-earth/transition-metal alloys as promising candidates for SOT device applications.National Science Foundation (U.S.) (NSF-ECCS-1408172

    Three-terminal resistive switch based on metal/metal oxide redox reactions

    Get PDF
    A solid-state three-terminal resistive switch based on gate-voltage-tunable reversible oxidation of a thin-film metallic channel is demonstrated. The switch is composed of a cobalt wire placed under a GdOx layer and a Au top electrode. The lateral resistance of the wire changes with the transition between cobalt and cobalt oxide controlled by a voltage applied to the top electrode. The kinetics of the oxidation and reduction process are examined through time- and temperature-dependent transport measurements. It is shown that that reversible voltage induced lateral resistance switching with a ratio of 10 3 can be achieved at room temperature. The reversible non-volatile redox reaction between metal and metal oxide may provide additional degrees of freedom for post-fabrication control of properties of solid-state materials. This type of three-terminal device has potential applications in neuromorphic computing and multilevel data storage, as well as applications that require controlling a relatively large current.National Science Foundation (U.S.) (Grant DMR-1419807

    Spin transport in as-grown and annealed thulium iron garnet/platinum bilayers with perpendicular magnetic anisotropy

    Get PDF
    We characterize the spin Hall magnetoresistance (SMR), spin Seebeck effect (SSE), and dampinglike spin-orbit torque (SOT) in thulium iron garnet/platinum bilayers with perpendicular magnetic anisotropy by using harmonic Hall effect measurements. By consecutive annealing steps followed by measurements on a single device, we reveal that the spin-dependent effects gradually decrease in amplitude as the annealing temperature increases. We attribute this behavior primarily to the changes in the spin-mixing conductance, which sensitively depends on the interface quality. However, further analysis demonstrates that although the SSE scales closely with the SMR, the dampinglike SOT shows a significantly different trend upon annealing, contrary to theoretical expectations. By comparing the dampinglike SOT with the field-induced Hall effect, we found evidence that scattering from Fe impurities in the Pt at the interface might be responsible for the distinct annealing temperature dependence of the dampinglike SOT.Deutsche ForschungsgemeinschaftUnited States. Defense Advanced Research Projects Agency (C-SPIN, a SRC STARnet Center)Microelectronics Advanced Research Corporation (MARCO) (C-SPIN, a SRC STARnet Center

    Magneto-ionic control of interfacial magnetism

    Get PDF
    In metal/oxide heterostructures, rich chemical electronic magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O{superscript 2−] migration in a ​Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm[superscript −2] at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.National Science Foundation (U.S.) (NSF-ECCS-1128439)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR-0819762)Samsung (Firm) (Samsung Global MRAM Innovation program

    Transport dynamics of superparamagnetic microbeads trapped by mobile magnetic domain walls

    No full text
    The dynamics of fluid-borne superparamagnetic bead transport by field-driven domain walls (DWs) in submicrometer ferromagnetic tracks is studied experimentally together with numerical and analytical modeling. A combination of micromagnetic modeling and numerical calculation is used to determine the strength of bead-DW interaction for a range of track geometries and bead sizes. The maximum DW velocity for continuous bead transport is predicted from these results and shown to be supported by experimental measurements. Enhancement of the maximum velocity by appropriate material selection or field application is demonstrated, and an analysis of the source of statistical variation is presented. Finally, the dynamics of bead-DW interaction and bead transport above the maximum DW velocity for continuous DW-mediated bead transport is characterized.Massachusetts Institute of Technology. Center for Materials Science and EngineeringNational Science Foundation (U.S.) (DMR-0819762)Deshpande Center for Technological Innovation (Massachusetts Institute of Technology. School of Engineering

    Optimization of out-of-plane magnetized Co/Pt multilayers with resistive buffer layers

    No full text
    Ta oxide (TaOx) is investigated as a resistive buffer layer for the growth of high-quality Co/Pt multilayers with perpendicular magnetic anisotropy (PMA). The Pt/(Co/Pt)3 films grown on TaOx buffer layers exhibit stronger PMA than those grown on Pt buffer layers, and are of comparable quality to films grown on metallic Ta. The optimized multilayers with TaOx buffer layers remain out-of-plane magnetized for Co layer thicknesses up to 10 Ã… without introducing a metallic current-shunting path, making these films attractive for spintronic devices using spin-polarized current.National Science Foundation (U.S.) (Graduate Research Fellowship Program

    Enhanced current-induced domain wall motion by tuning perpendicular magnetic anisotropy

    No full text
    The effect of perpendicular magnetic anisotropy (PMA) on current-induced domain wall (DW) motion is investigated by micromagnetic simulations. The critical current density J[subscript C] to drive DWs into periodic transformation and continuous motion by adiabatic spin transfer torque decreases with increasing PMA. Also, with optimized PMA that almost exactly compensates the demagnetizing field, the adiabatic displacement of DWs driven by currents less than J[subscript C] is strongly enhanced. Since PMA can be controlled easily in magnetic multilayer films, this technique of enhancing current-induced DW motion may be practical for device applications.National Science Foundation (U.S.). Graduate Research Fellowship Progra
    corecore