2 research outputs found

    Minimum distance of error correcting codes versus encoding complexity, symmetry, and pseudorandomness

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (leaves 207-214).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.We study the minimum distance of binary error correcting codes from the following perspectives: * The problem of deriving bounds on the minimum distance of a code given constraints on the computational complexity of its encoder. * The minimum distance of linear codes that are symmetric in the sense of being invariant under the action of a group on the bits of the codewords. * The derandomization capabilities of probability measures on the Hamming cube based on binary linear codes with good distance properties, and their variations. Highlights of our results include: * A general theorem that asserts that if the encoder uses linear time and sub-linear memory in the general binary branching program model, then the minimum distance of the code cannot grow linearly with the block length when the rate is nonvanishing. * New upper bounds on the minimum distance of various types of Turbo-like codes. * The first ensemble of asymptotically good Turbo like codes. We prove that depth-three serially concatenated Turbo codes can be asymptotically good. * The first ensemble of asymptotically good codes that are ideals in the group algebra of a group. We argue that, for infinitely many block lengths, a random ideal in the group algebra of the dihedral group is an asymptotically good rate half code with a high probability. * An explicit rate-half code whose codewords are in one-to-one correspondence with special hyperelliptic curves over a finite field of prime order where the number of zeros of a codeword corresponds to the number of rational points.(cont.) * A sharp O(k-1/2) upper bound on the probability that a random binary string generated according to a k-wise independent probability measure has any given weight. * An assertion saying that any sufficiently log-wise independent probability measure looks random to all polynomially small read-once DNF formulas. * An elaborate study of the problem of derandomizability of ACâ‚€ by any sufficiently polylog-wise independent probability measure. * An elaborate study of the problem of approximability of high-degree parity functions on binary linear codes by low-degree polynomials with coefficients in fields of odd characteristics.by Louay M.J. Bazzi.Ph.D

    Robust algorithms for model-based object recognition and localization

    No full text
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 86-87).We consider the problem of model-based object recognition and localization in the presence of noise, spurious features, and occlusion. We address the case where the model is allowed to be transformed by elements in a given space of allowable transformations. Known algorithms for the problem either treat noise very accurately in an unacceptable worst case running time, or may have unreliable output when noise is allowed. We introduce the idea of tolerance which measures the robustness of a recognition and localization method when noise is allowed. We present a collection of algorithms for the problem, each achieving a different degree of tolerance. The main result is a localization algorithm that achieves any desired tolerance in a relatively low order worst case asymptotic running time. The time constant of the algorithm depends on the ratio of the noise bound over the given tolerance bound. The solution we provide is general enough to handle different cases of allowable transformations, such as planar affine transformations, and scaled rigid motions in arbitrary dimensions.by Louay Mohamad Jamil Bazzi.S.M
    corecore