13 research outputs found
Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice
Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease.
Item does not contain fulltextHippocampal atrophy and neuron loss are commonly found in Alzheimer's disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APP(SL)/PS1 KI mice, as well as in APP(SL) mice and PS1 KI mice. We found a loss of PV-ir neurons (40-50%) in the CA1-2, and a loss of CR-ir neurons (37-52%) in the dentate gyrus and hilus of APP(SL)/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.01 maart 201
Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth
The original publication can be found at www.springerlink.comHuman pregnancy is associated with sexually dimorphic differences in mortality and morbidity of the fetus with the male fetus experiencing the poorest outcome following complications such as pre-eclampsia, pre-term delivery and infection. The physiological mechanisms that confer these differences have not been well characterised in the human. Work conducted on the effect of maternal asthma during pregnancy, combining data collected from the mother, placenta and fetus has found some significant sex-related mechanistic differences associated with fetal growth in both normal pregnancies and pregnancies complicated by asthma. Specifically, sexually dimorphic differences have been found in placental glucocorticoid metabolism in male and female fetuses of normal pregnancies. In response to the presence of maternal asthma, only the female fetus alters placental glucocorticoid metabolism resulting in decreased growth. The male fetus does not alter placental function or growth in response to maternal asthma. As a result of the alterations in glucocorticoid metabolism in the female, downstream changes occur in pathways regulated by glucocorticoids. These data suggest that the female fetus adjusts placental function and reduces growth to compensate for maternal disease. However, the male fetus continues to grow in response to maternal asthma with no changes in placental function. This response by the male fetus may partially contribute to the increased risk of morbidity and mortality in this sex.Vicki L. Clifto
Contrasting Effects of Increased and Decreased Dopamine Transmission on Latent Inhibition in Ovariectomized Rats and Their Modulation by 17β-Estradiol: An Animal Model of Menopausal Psychosis?
Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17β-Estradiol (50, 150 μg/kg), clozapine (atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham rats, but were much less effective in ovariectomized rats; 17β-estradiol and clozapine were effective only at high doses (150 μg/kg and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with 17β-estradiol (50 μg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17β-estradiol exerts antipsychotic activity