2,095 research outputs found
Half-life Limit of 19Mg
A search for 19Mg was performed using projectile fragmentation of a 150
MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight
through the fragment separator an upper limit of 22 ns for the half-life of
19Mg was established
Production of Radioactive Nuclides in Inverse Reaction Kinematics
Efficient production of short-lived radioactive isotopes in inverse reaction
kinematics is an important technique for various applications. It is
particularly interesting when the isotope of interest is only a few nucleons
away from a stable isotope. In this article production via charge exchange and
stripping reactions in combination with a magnetic separator is explored. The
relation between the separator transmission efficiency, the production yield,
and the choice of beam energy is discussed. The results of some exploratory
experiments will be presented.Comment: 10 pages, 4 figures, to be submitted to Nucl. Instr. and Met
Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25
The results of measurements of the production of neutron-rich nuclei by the
fragmentation of a 76-Ge beam are presented. The cross sections were measured
for a large range of nuclei including fifteen new isotopes that are the most
neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar,
55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced
cross sections of several new nuclei relative to a simple thermal evaporation
framework, previously shown to describe similar production cross sections,
indicates that nuclei in the region around 62-Ti might be more stable than
predicted by current mass models and could be an indication of a new island of
inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200
One-neutron knockout from Ni
The single-particle structure of Ni and level structure of Ni
were investigated with the \mbox{Be (Ni,Ni+)} reaction at 73 MeV/nucleon. An inclusive cross
section of 41.4(12) mb was obtained for the reaction, compared to a theoretical
prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is
exhausted. This reduction in the observed spectroscopic strength is consistent
with that found for lighter well-bound nuclei. One-neutron removal
spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited
states of Ni were deduced.Comment: Phys. Rev. C, accepte
In-beam gamma-ray spectroscopy of 35Mg and 33Na
Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated
in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam
energy. We report on the first observation of gamma-ray transitions in 35Mg,
the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island
of Inversion" around N = 20. The results are discussed in the framework of
large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new
gamma-ray transition was observed that is suggested to complete the gamma-ray
cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder
states that are predicted to form a close-to-ideal K = 3/2 rotational band in
the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced
figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the
two figure
- …