1,747 research outputs found

    Half-life Limit of 19Mg

    Full text link
    A search for 19Mg was performed using projectile fragmentation of a 150 MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight through the fragment separator an upper limit of 22 ns for the half-life of 19Mg was established

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure

    Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25

    Full text link
    The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 76-Ge beam are presented. The cross sections were measured for a large range of nuclei including fifteen new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar, 55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced cross sections of several new nuclei relative to a simple thermal evaporation framework, previously shown to describe similar production cross sections, indicates that nuclei in the region around 62-Ti might be more stable than predicted by current mass models and could be an indication of a new island of inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200

    One-neutron knockout from 57^{57}Ni

    Get PDF
    The single-particle structure of 57^{57}Ni and level structure of 56^{56}Ni were investigated with the \mbox{9^{9}Be (57^{57} Ni,56^{56}Ni+γ\gamma)X\it{X}} reaction at 73 MeV/nucleon. An inclusive cross section of 41.4(12) mb was obtained for the reaction, compared to a theoretical prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is exhausted. This reduction in the observed spectroscopic strength is consistent with that found for lighter well-bound nuclei. One-neutron removal spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited states of 56^{56}Ni were deduced.Comment: Phys. Rev. C, accepte
    corecore