19 research outputs found

    A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions

    Full text link
    The isolation of sperm cells from background cell populations and debris is an essential step in all assisted reproductive technologies. Conventional techniques for sperm recovery from testicular sperm extractions stagnate at the sample processing stage, where it can take several hours to identify viable sperm from a background of collateral cells such as white bloods cells (WBCs), red blood cells (RBCs), epithelial cells (ECs) and in some cases cancer cells. Manual identification of sperm from contaminating cells and debris is a tedious and time-consuming operation that can be suitably addressed through inertial microfluidics. Microfluidics has proven an effective technology for high-quality sperm selection based on motility. However, motility-based selection methods cannot cater for viable, non-motile sperm often present in testicular or epididymal sperm extractions and aspirations. This study demonstrates the use of a 3D printed inertial microfluidic device for the separation of sperm cells from a mixed suspension of WBCs, RBCs, ECs, and leukemic cancer cells. This technology presents a 36-fold time improvement for the recovery of sperm cells (> 96%) by separating sperm, RBCS, WBCs, ECs and cancer cells into tight bands in less than 5 min. Furthermore, microfluidic processing of sperm has no impact on sperm parameters; vitality, motility, morphology, or DNA fragmentation of sperm. Applying inertial microfluidics for non-motile sperm recovery can greatly improve the current processing procedure of testicular sperm extractions, simplifying the fertility outcomes for severe forms of male infertility that warrant the surgery

    Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications.

    Full text link
    The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies

    The evolving landscape of predictive biomarkers in immuno-oncology with a focus on spatial technologies.

    Full text link
    Immunotherapies have shown long-lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy

    Metal-Organic Framework-Enhanced ELISA Platform for Ultrasensitive Detection of PD-L1

    Full text link
    © 2020 American Chemical Society. The programmed cell death ligand 1 (PD-L1) protein has emerged as a predictive cancer biomarker and sensitivity to immune checkpoint blockade-based cancer immunotherapies. Current technologies for the detection of protein-based biomarkers, including the enzyme-linked immunosorbent assay (ELISA), have limitations such as low sensitivity and limit of detection (LOD) in addition to degradation of antibodies in exposure to environmental changes such as temperature and pH. To address these issues, we have proposed a metal-organic framework (MOF)-based ELISA for the detection of the PD-L1. A protective coating based on Zeolitic Imidazolate Framework 8 (ZIF-8) MOF thin film and polydopamine-polyethylenimine (PDA-PEI) was introduced on an ELISA plate for the improvement of antibody immobilization. Sensitivity and LOD of the resulting platform were compared with a conventional ELISA kit, and the bioactivity of the antibody in the proposed immunoassay was investigated in response to various pH and temperature values. The LOD and sensitivity of the MOF-based PD-L1 ELISA were 225 and 15.12 times higher, respectively, compared with those of the commercial ELISA kit. The antibody@ZIF-8/PDA-PEI was stable up to 55 °C and the pH range 5-10. The proposed platform can provide sensitive detection for target proteins, in addition to being resistant to elevated temperature and pH. The proposed MOF-based ELISA has significant potential for the clinical and diagnostic studies

    Estimation of the optimum number and location of nanoparticle injections and the specific loss power for ideal hyperthermia.

    Full text link
    Hyperthermia is one of the most appealing methods of cancer treatment in which the temperature of tumor is elevated to reach a desired temperature. One of the methods of increasing tissue temperature is injection of nanoparticle fluids to tumor and applying alternative magnetic field, which is called magnetic nanoparticle hyperthermia method. The total number of injection points, as well as the their location within a tissue play a significant role in this method. Furthermore, the power of heating of a magnetic material per gram or specific loss power (SLP) is another important factor which needs to be investigated. As the uniform temperature of 43 °C is effective enough for a tumor regression in certain specific tissues, the inverse method is applied to find out both the number of injection points and their location. Furthermore, the effective amount of heat generated by nanoparticles is investigated by this technique. Two-dimensional cancerous brain tissue was considered, zero gradients on boundary conditions were assumed, and diffusion equation and Pennes equation, which is regarded as energy equation, were solved, respectively. Conjugate gradient technique as a one way of inverse methods is applied, and unknowns are investigated. The results illustrate that three-point injection with the best injection sites cannot induce a uniform temperate distribution of 43 °C, and although four-point injection can create a uniform temperature elevation, the amount of it cannot reach the 43 °C. Finally, the optimum locations of five-point injection which are ((0.80,3.24), (0.80,0.84), (2.00,2.00), (3.20,3.24), (3.32,0.84)) (all dimensions are in mm) in the studied domain with special loss power of 420 W/g, all of which are obtained after 36 iterations, demonstrate that these conditions can meet the requirements of the magnetic fluid hyperthermia and can be considered for the future usage of researchers and investigators

    Advances and enabling technologies for phase-specific cell cycle synchronisation

    Full text link
    Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing and drug efficacy of cells and in studying cell cycle events and regulatory mechanisms involved in the cell cycle progression of multiple cell species. Ideally, cell cycle synchrony techniques should be applicable for all cell types, maintain synchrony across multiple cell cycle events, maintain cell viability and be robust against metabolic and physiological perturbations. In this review, we categorize cell cycle synchronisation approaches and discuss their operational principles and performance efficiencies. We highlight the advances and technological development trends from conventional methods to the more recent microfluidics-based systems. Furthermore, we discuss the opportunities and challenges for implementing high throughput cell synchronisation and provide future perspectives on synchronisation platforms, specifically hybrid cell synchrony modalities, to allow the highest level of phase-specific synchrony possible with minimal alterations in diverse types of cell cultures

    The role of 3D printing in the fight against COVID-19 outbreak

    Full text link
    Along with the COVID-19 pandemic, urgent needs for medical and specialized products, especially personal protective equipment, has been overwhelming. The conventional production line of medical devices has been challenged by excessive global demand, and the need for an easy, low-cost and rapid fabrication method is felt more than ever. In a scramble to address this shortfall, manufacturers referred to additive manufacturing or 3D printing to fill the gap and increase the production line of medical devices. Various previously/conventionally fabricated designs have been modified and redesigned to suit the 3D printing requirement to fight against COVID-19. In this perspective, various designs accommodated for the current worldwide outbreak of COVID-19 are discussed and how 3D printing could help the global community against the current and future conditions has been explored

    3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation

    Full text link
    © 2020 Elsevier Ltd Antibody micro/nano-particle conjugates have proven to be essential tools in many diagnostic and nanomedicine applications. However, their production with homogenous coating and in a continuous fashion remains a tedious, labor-intensive, and costly process. In this regard, 3D micromixer-based microfluidic devices offer significant advantages over existing methods, where manipulating the flow in three dimensions increases fluid contact area and surface disruption, facilitating efficient mixing. While conventional softlithography is capable of fabricating simple 2D micromixers, complications arise when processing 3D structures. In this paper, we report the direct fabrication of a 3D complex microchannel design using additive manufacturing for the continuous conjugation of antibodies onto particle surfaces. This method benefits from a reduction in cost and time (from days to hours), simplified fabrication process, and limited post-processing. The flexibility of direct 3D printing allows quick and easy tailoring of design features to facilitate the production of micro and nanoparticles conjugated with functional antibodies in a continuous mixing process. We demonstrate that the produced antibody-functionalized particles retain their functionality by a firm and specific interaction with antigen presenting cells. By connecting 3D printed micromixers across the conjugation process, we illustrate the role of 3D printed microchannels as modularized components. The 3D printing method we report enables a broad spectrum of researchers to produce complex microfluidic geometries within a short time frame

    A hybrid micromixer with planar mixing units

    Full text link
    © The Royal Society of Chemistry. The application of microfluidic systems in chemical and biological assays has progressed dramatically in recent years. One of the fundamental operations that microfluidic devices must achieve is a high mixing index. Of particular importance is the role of planar mixing units with repetitive obstacles (MURO) in the formation of micromixers. To date, a myriad of planar passive micromixers has been proposed. However, a strategy for the combination of these units to find an efficient planar mixer has not been investigated. As such, five different MURO have been selected to form a “hybrid micromixer,” and their combination was evaluated via numerical and experimental methods. These mixing units include ellipse-like, Tesla, nozzle and pillar, teardrop, and obstruction in a curved mixing unit. Since these units have distinctive dimensions, dynamic and geometric similarities were used to scale and connect them. Afterwards, six slots were designated to house each mixing unit. Since the evaluation of all possible unit configurations is not feasible, the design of experiment method is applied to reduce the total number of experiments from 15 625 to 25. Following this procedure, the “hybrid” micromixer proposed here, comprising Tesla, nozzle and pillar, and obstruction units, shows improved performance for a wide range of Re (i.e., mixing index of >90% for Re 0.001-0.1, 22-45) over existing designs. The use of velocity profiles, concentration diagrams, vorticity and circulation plots assist in the analysis of each unit. Comparison of the proposed “hybrid” micromixer with other obstacle-based planar micromixers demonstrates improved performance, indicating the combination of planar mixing units is a useful strategy for building high-performance micromixers

    Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. During the last decade, isolation of circulating tumour cells via blood liquid biopsy of prostate cancer (PCa) has attracted significant attention as an alternative, or substitute, to conventional diagnostic tests. However, it was previously determined that localised forms of PCa shed a small number of cancer cells into the bloodstream, and a large volume of blood is required just for a single test, which is impractical. To address this issue, urine has been used as an alternative to blood for liquid biopsy as a truly non-invasive, patient-friendly test. To this end, we developed a spiral microfluidic chip capable of isolating PCa cells from the urine of PCa patients. Potential clinical utility of the chip was demonstrated using anti-Glypican-1 (GPC-1) antibody as a model of the primary antibody in immunofluorescent assay for identification and detection of the collected tumour cells. The microchannel device was first evaluated using DU-145 cells in a diluted Dulbecco’s phosphate-buffered saline sample, where it demonstrated >85 (±6) % efficiency. The microchannel proved to be functional in at least 79% of cases for capturing GPC1+ putative tumour cells from the urine of patients with localised PCa. More importantly, a correlation was found between the amount of the captured GPC1+ cells and crucial diagnostic and prognostic parameter of localised PCa—Gleason score. Thus, the technique demonstrated promise for further assessment of its diagnostic value in PCa detection, diagnosis, and prognosis
    corecore