166 research outputs found

    Thermopower of Interacting GaAs Bilayer Hole Systems in the Reentrant Insulating Phase near ν=1\nu=1

    Full text link
    We report thermopower measurements of interacting GaAs bilayer hole systems. When the carrier densities in the two layers are equal, these systems exhibit a reentrant insulating phase near the quantum Hall state at total filling factor ν=1\nu=1. Our data show that as the temperature is decreased, the thermopower diverges in the insulating phase. This behavior indicates the opening of an energy gap at low temperature, consistent with the formation of a pinned Wigner solid. We extract an energy gap and a Wigner solid melting phase diagram.Comment: to be published in Phys. Rev. Let

    Structural and electrical characterization of hybrid metal-polypyrrole nanowires

    Full text link
    We present here the synthesis and structural characterization of hybrid Au-polypyrrole-Au and Pt- polypyrrole-Au nanowires together with a study of their electrical properties from room-temperature down to very low temperature. A careful characterization of the metal-polymer interfaces by trans- mission electron microscopy revealed that the structure and mechanical strength of bottom and upper interfaces are very different. Variable temperature electrical transport measurements were performed on both multiple nanowires - contained within the polycarbonate template - and single nanowires. Our data show that the three-dimensional Mott variable-range-hopping model provides a complete framework for the understanding of transport in PPy nanowires, including non-linear current-voltage characteristics and magnetotransport at low temperatures.Comment: Phys. Rev. B Vol. 76 Issue 11 (2007

    Heat Capacity Evidence for the Suppression of Skyrmions at Large Zeeman Energy

    Full text link
    Measurements on a multilayer two-dimensional electron system (2DES) near Landau level filling ν\nu=1 reveal the disappearance of the nuclear spin contribution to the heat capacity as the ratio g~\tilde{g} between the Zeeman and Coulomb energies exceeds a critical value g~c≈\tilde{g}_c \approx0.04. This disappearance suggests the vanishing of the Skyrmion-mediated coupling between the lattice and the nuclear spins as the spin excitations of the 2DES make a transition from Skyrmions to single spin-flips above g~c\tilde{g}_c. Our experimental g~c\tilde{g}_c is smaller than the calculated g~c\tilde{g}_c=0.054 for an ideal 2DES; we discuss possible origins of this discrepancy.Comment: Experimental paper, 6 figure

    2D Rutherford-Like Scattering in Ballistic Nanodevices

    Full text link
    Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit

    Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy

    Full text link
    The disordered potential landscape in an InGaAs/InAlAs two-dimensional electron gas patterned into narrow wires is investigated by means of scanning gate microscopy. It is found that scanning a negatively charged tip above particular sites of the wires produces conductance oscillations that are periodic in the tip voltage. These oscillations take the shape of concentric circles whose number and diameter increase for more negative tip voltages until full depletion occurs in the probed region. These observations cannot be explained by charging events in material traps, but are consistent with Coulomb blockade in quantum dots forming when the potential fluctuations are raised locally at the Fermi level by the gating action of the tip. This interpretation is supported by simple electrostatic simulations in the case of a disorder potential induced by ionized dopants. This work represents a local investigation of the mechanisms responsible for the disorder-induced metal-to-insulator transition observed in macroscopic two-dimensional electron systems at low enough density

    Coherent-State Approach to Two-dimensional Electron Magnetism

    Full text link
    We study in this paper the possible occurrence of orbital magnetim for two-dimensional electrons confined by a harmonic potential in various regimes of temperature and magnetic field. Standard coherent state families are used for calculating symbols of various involved observables like thermodynamical potential, magnetic moment, or spatialdistribution of current. Their expressions are given in a closed form and the resulting Berezin-Lieb inequalities provide a straightforward way to study magnetism in various limit regimes. In particular, we predict a paramagnetic behaviour in the thermodynamical limit as well as in the quasiclassical limit under a weak field. Eventually, we obtain an exact expression for the magnetic moment which yields a full description of the phase diagram of the magnetization.Comment: 21 pages, 6 figures, submitted to PR

    Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Full text link
    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.Comment: 13 pages, 3 figure

    Scanning-gate microscopy of semiconductor nanostructures: an overview

    Full text link
    This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201

    Imaging Electron Wave Functions Inside Open Quantum Rings

    Full text link
    Combining Scanning Gate Microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of electron probability density ∣Ψ∣2(x,y)|\Psi|^{2}(x,y) in embedded mesoscopic quantum rings (QRs). The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wavefunction interferences. Simulations of both ∣Ψ∣2(x,y)|\Psi|^{2}(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to ∣Ψ∣2(x,y)|\Psi|^{2}(x,y).Comment: new titl
    • …
    corecore