385 research outputs found

    Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    Get PDF
    Background: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and Methods: The effect of macrophages cultured on polypropylene (PP) or polyethylene terephthalate coated with a collagen film (PET/Col) on ASCs in monolayer or on the same material was examined either through conditioned medium (CM) or in a direct coculture. ASC proliferation, collagen production, and gene expression were examined. As comparison, the effect of macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFN gamma) [M(LPS/IFN gamma)] or interleukin (IL) 4 [M(IL-4)] on ASCs was examined. Results: Macrophage-CM increased collagen deposition, proliferation, and gene expression of MMP1, PLOD2, and PTGS2 in ASCs, irrespective of the material. Culturing ASCs and macrophages in coculture when only macrophages were on the materials induced the same effects on gene expression. When both ASCs and macrophages were cultured on biomaterials, PP induced COL1A1 and MMP1 more than PET/Col. M(LPS/IFN gamma) CM increased PLOD2, MMP1, and PTGS2 and decreased TGFB in ASCs more than the M(IL-4) CM. Conclusion: Biomaterials influence wound healing by influencing the interaction between macrophages and ASCs. We provided more insight into the behavior of different cell types during wound healing. This behavior appears to be biomaterial specific depending on which cell type interacts with the biomaterial. As such, the biomaterial will influence tissue regeneration

    Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    Get PDF
    Background: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and Methods: The effect of macrophages cultured on polypropylene (PP) or polyethylene terephthalate coated with a collagen film (PET/Col) on ASCs in monolayer or on the same material was examined either through conditioned medium (CM) or in a direct coculture. ASC proliferation, collagen production, and gene expression were examined. As comparison, the effect of macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFN gamma) [M(LPS/IFN gamma)] or interleukin (IL) 4 [M(IL-4)] on ASCs was examined. Results: Macrophage-CM increased collagen deposition, proliferation, and gene expression of MMP1, PLOD2, and PTGS2 in ASCs, irrespective of the material. Culturing ASCs and macrophages in coculture when only macrophages were on the materials induced the same effects on gene expression. When both ASCs and macrophages were cultured on biomaterials, PP induced COL1A1 and MMP1 more than PET/Col. M(LPS/IFN gamma) CM increased PLOD2, MMP1, and PTGS2 and decreased TGFB in ASCs more than the M(IL-4) CM. Conclusion: Biomaterials influence wound healing by influencing the interaction between macrophages and ASCs. We provided more insight into the behavior of different cell types during wound healing. This behavior appears to be biomaterial specific depending on which cell type interacts with the biomaterial. As such, the biomaterial will influence tissue regeneration

    Guiding synovial inflammation by macrophage phenotype modulation: An in vitro study towards a therapy for osteoarthritis

    Get PDF
    Objective: The aims of this study were to modulate inflammation in synovial explants with the compounds: dexamethasone, rapamycin, bone morphogenetic protein 7 (BMP-7) and pravastatin, and to investigate the mod

    Design and characterization of synthetic biodegradable films for musculoskeletal tissue engineering

    Get PDF
    To repair soft tissue, it is vital to ensure that the biomaterial is able to mimic the complex elasticity of the native tissue. It has been demonstrated that substrate stiffness has a huge influence on cellular growth, differentiation, motility and phenotype maintenance. The goal of the present study is to characterize extensively a set of polymeric films with variable mechanical profiles. A range of synthetic biodegradable polymers was selected according to the physico-chemical intrinsic properties of aliphatic polymers. They have similar chemistry (absorbable polyesters made from lactic acid, glycolic acid, trimethylene carbonate, dioxanone & β-caprolactone), however show different mechanical and degradation properties. The films were manufactured by thermal presser and then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the films were assessed by uniaxial tensile tests in wet conditions and also by atomic force microscopy (AFM) to assess the material's stiffness at a micro-level. In vitro assays were performed to assess the cell cytocompatibility, proliferation and differentiation potential of the films. The mechanical properties of the materials are within the range intended for musculoskeletal tissue repair. Biological assays showed good cell adhesion, cell proliferation and cell viability. Stem cells were able to differentiate into adipogenic, osteogenic, chondrogenic and tenogenic lineages. Overall the selection of polymers gave good options for a potential tissue repair scaffold. In the future, the combined effect of stiffness and topography will be assessed on cell phenotype maintenance

    The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    Get PDF
    Activation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we undertook a systematic review of the macrophage polarization in response to these different surgical biomaterials in vitro. Beside the chemistry, material characteristics such as dimension, pore size, and surface topography are of great influence on the response of macrophages. The macrophage response also appears to depend on the differences in sterilization techniques that induce lasting biochemical changes or residues of chemicals and their byproducts used for sterilization. Regarding tissue-based biomaterials, macrophages on human or porcine dermis, strongly cross-linked by chemicals elicit in general a proinflammatory response with higher amounts of proinflammatory cytokines. Synthetic biomaterials such as polyethylene, polyethylene terephthalate (PET) + polyacrylamide (PAAm), PET + sodium salt of poly(acrylic acid) (PAANa), perfluoropolyether (PFPE) with large posts, PEG-g-PA, and polydioxanone (PDO) always appear to elicit an anti-inflammatory response in macrophages, irrespective of origin of the macrophages, for example, buffy coats or full blood. In conclusion, in general in vitro models contribute to evaluate the foreign body reaction on surgical biomaterials. Although it is difficult to simulate complexity of host response elicited by biomaterials, after their surgical implantation, an in vitro model gives indications of the initial foreign body response and allows the comparison of this response between biomaterials

    Oxidation kinetics of hercynite spinels for solar thermochemical fuel production

    Get PDF
    The development of an economically viable solar thermochemical fuel production process relies largely on identifying redox active materials with optimized thermodynamic and kinetic properties. Iron aluminate (FeAl2O4, hercynite) and cobalt-iron aluminate (CoxFe1-xAl2O4) have both been demonstrated as viable redox-active materials for this process. However, doping with cobalt creates a tradeoff between the thermodynamics and kinetics of H2 production mediated by hercynite in which the kinetics are improved at the expense of lowering the yield. In this work, we evaluate four spinel aluminate materials with varying cobalt contents (FeAl2O4, Co0.05Fe0.95Al2O4, Co0.25Fe0.75Al2O4, and Co0.40Fe0.60Al2O4) to better understand the role of cobalt in the redox mediating properties of these materials and to quantify its effect on the thermodynamic and kinetic properties for CO2 reduction. A solid-state kinetic analysis was performed on each sample to model its CO2 reduction kinetics at temperatures ranging from 1200 °C to 1350 °C. An F1 model representative of first-order reaction kinetics was found to most accurately represent the experimental data for all materials evaluated. The computed rate constants, activation energies, and pre-exponential factors all increase with increasing cobalt content. High temperature in-situ XPS was utilized to characterize the spinel surfaces and indicated the presence of metallic states of the reduced cobalt-iron spinel, which are not present in un-doped hercynite. These species provide a new site for the CO2 reduction reaction and enhance its rate through an increased pre-exponential factor

    Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    Get PDF
    Background: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and Methods: The effect of macrophages cultured on polypropylene (PP) or polyethylene terephthalate coated with a collagen film (PET/Col) on ASCs in monolayer or on the same material was examined either through conditioned medium (CM) or in a direct coculture. ASC proliferation, collagen production, and gene expression were examined. As comparison, the effect of macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFNγ) [M(LPS/IFNγ)] or interleukin (IL) 4 [M(IL-4)] on ASCs was examined. Results: Macrophage-CM increased collagen deposition, proliferation, and gene expression of MMP1, PLOD2, and PTGS2 in ASCs, irrespective of the material. Culturing ASCs and macrophages in coculture when only macrophages were on the materials induced the same effects on gene expression. When both ASCs and macrophages were cultured on biomaterials, PP induced COL1A1 and MMP1 more than PET/Col. M(LPS/IFNγ) CM increased PLOD2, MMP1, and PTGS2 and decreased TGFB in ASCs more than the M(IL-4) CM. Conclusion: Biomaterials influence wound healing by influencing the interaction between macrophages and ASCs. We provided more insight into the behavior of different cell types during wound healing. This behavior appears to be biomaterial specific depending on which cell type interacts with the biomaterial. As such, the biomaterial will influence tissue regeneration

    Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures

    Get PDF
    The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie, grant agreement No. 676338, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement No. 866126 and the European Union’s Horizon 2020 research and innova tion Widespread: Twinning programme, grant agreement No. 810850. This publication has emanated from research supported in part by grants from Science Foundation Ireland (SFI) under Grant numbers 15/CDA/3629 and 19/FFP/6982 and Science Foundation Ireland (SFI) and European Regional Development Fund (ERDF) under grant number 13/RC/2073_2. E.M.F. acknowledges to the project TERM RES Hub – Infraestrutura Científica para a Engenharia de Tecidos e Medicina Regenerativa, Ref Num ber NORTE-01-0145-FEDER-02219015. The authors would like to acknowledge the significant contribution of Dr Oonagh Dwane in the writing and management of all grants. Open access funding provided by IReL
    • …
    corecore