299 research outputs found
On birational involutions of
Let be a rationally connected three-dimensional algebraic variety and let
be an element of order two in the group of its birational selfmaps.
Suppose that there exists a non-uniruled divisorial component of the
-fixed point locus. Using the equivariant minimal model program we give a
rough classification of such elements.Comment: 24 pages, late
Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)
We report on the structural properties of Ge_(1-x)Mn_x layers grown by
molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are
embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray
scattering, atomic force and transmission electron microscopy to study the
structural properties of the columns. We demonstrate how the elastic
deformation of the matrix (as calculated using atomistic simulations) around
the columns, as well as the average inter-column distance can account for the
shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure
Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns
We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films
grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures
(Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and
11 %. Their crystalline structure, morphology and composition have been
investigated by transmission electron microscopy (TEM), electron energy loss
spectroscopy and x-ray diffraction. In the whole range of growth temperatures
and Mn concentrations, we observed the formation of manganese rich
nanostructures embedded in a nearly pure germanium matrix. Growth temperature
mostly determines the structural properties of Mn-rich nanostructures. For low
growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal
decomposition resulting in the formation of vertical one-dimensional
nanostructures (nanocolumns). Moreover we show in this paper the influence of
growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns
size and density. For temperatures higher than 180deg C, we observed the
formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns
and nanoclusters coexist. Combining high resolution TEM and superconducting
quantum interference device magnetometry, we could evidence at least four
different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn
atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc
nanocolumns (120 K 400 K) and
(iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte
Fish assemblage of two Posidonia oceanica (L.) Delile, 1813, meadows with different degrees of conservation
Ictiofauna de dos praderas de Posidonia oceanica (L.) Delile con distinto grado de conservación
Electrical and thermal spin accumulation in germanium
In this letter, we first show electrical spin injection in the germanium
conduction band at room temperature and modulate the spin signal by applying a
gate voltage to the channel. The corresponding signal modulation agrees well
with the predictions of spin diffusion models. Then by setting a temperature
gradient between germanium and the ferromagnet, we create a thermal spin
accumulation in germanium without any tunnel charge current. We show that
temperature gradients yield larger spin accumulations than pure electrical spin
injection but, due to competing microscopic effects, the thermal spin
accumulation in germanium remains surprisingly almost unchanged under the
application of a gate voltage to the channel.Comment: 7 pages, 3 figure
A Multilevel Analysis of Implicit and Explicit CSR in French and UK Professional Sport
Research question: This paper examines the ways in which French and UK professional sports clubs implement and communicate their CSR policies. In addition to identifying similarities and differences between CSR practices in the two countries, our analysis extends and adapts the implicit-explicit CSR framework to the field of sport.
Research methods: We used a mixed methods approach to analyse qualitative and quantitative data on the CSR strategies of 66 professional rugby union (Top 14, Aviva Premiership Rugby) and football (Ligue 1, Premier League) clubs over the 2017-2018 season.
Results and findings: We found major differences in CSR communication between France and the UK. Communication by French clubs tends to highlight sport’s values, involve few media channels, whereas communication by UK clubs explicitly vaunts their social responsibility and involves numerous channels. In the case of CSR implementation, there are similarities between French and UK clubs, especially in the fields their CSR initiatives cover (e.g., health, diversity), as well as differences. However, the scope of initiatives varies more between sports than between countries, with football demonstrating a more international outlook than rugby.
Implications: This article expands Matten and Moon’s (2008) implicit-explicit CSR framework by identifying the influence of interactions between sectorial/field-level factors and national/macro-level factors on CSR practices, and by distinguishing between CSR communication and CSR implementation. Our results throw light on the shift from implicit to explicit CSR in French professional sport
Interacting Preformed Cooper Pairs in Resonant Fermi Gases
We consider the normal phase of a strongly interacting Fermi gas, which can
have either an equal or an unequal number of atoms in its two accessible spin
states. Due to the unitarity-limited attractive interaction between particles
with different spin, noncondensed Cooper pairs are formed. The starting point
in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory,
which approximates the pairs as being noninteracting. Here, we consider the
effects of the interactions between the Cooper pairs in a Wilsonian
renormalization-group scheme. Starting from the exact bosonic action for the
pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism
with the Wilsonian approach. We compare our findings with the recent
experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and
Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good
agreement. We also make predictions for the population-imbalanced case, that
can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the
imbalanced Fermi gas added, new figure and references adde
Crossover from spin accumulation into interface states to spin injection in the germanium conduction band
Electrical spin injection into semiconductors paves the way for exploring new
phenomena in the area of spin physics and new generations of spintronic
devices. However the exact role of interface states in spin injection mechanism
from a magnetic tunnel junction into a semiconductor is still under debate. In
this letter, we demonstrate a clear transition from spin accumulation into
interface states to spin injection in the conduction band of -Ge. We observe
spin signal amplification at low temperature due to spin accumulation into
interface states followed by a clear transition towards spin injection in the
conduction band from 200 K up to room temperature. In this regime, the spin
signal is reduced down to a value compatible with spin diffusion model. More
interestingly, we demonstrate in this regime a significant modulation of the
spin signal by spin pumping generated by ferromagnetic resonance and also by
applying a back-gate voltage which are clear manifestations of spin current and
accumulation in the germanium conduction band.Comment: 5 pages, 4 figure
A novel role for the root cap in phosphate uptake and homeostasis
The root cap has a fundamental role in sensing environmental cues as well as regulating root growth via altered meristem activity. Despite this well-established role in the control of developmental processes in roots, the root cap's function in nutrition remains obscure. Here, we uncover its role in phosphate nutrition by targeted cellular inactivation or phosphate transport complementation in Arabidopsis, using a transactivation strategy with an innovative high-resolution real-time P-33 imaging technique. Remarkably, the diminutive size of the root cap cells at the root-to-soil exchange surface accounts for a significant amount of the total seedling phosphate uptake (approximately 20%). This level of Pi absorption is sufficient for shoot biomass production (up to a 180% gain in soil), as well as repression of Pi starvation-induced genes. These results extend our understanding of this important tissue from its previously described roles in environmental perception to novel functions in mineral nutrition and homeostasis control
- …