14,056 research outputs found

    Signs in the cd-index of Eulerian partially ordered sets

    Get PDF
    A graded partially ordered set is Eulerian if every interval has the same number of elements of even rank and of odd rank. Face lattices of convex polytopes are Eulerian. For Eulerian partially ordered sets, the flag vector can be encoded efficiently in the cd-index. The cd-index of a polytope has all positive entries. An important open problem is to give the broadest natural class of Eulerian posets having nonnegative cd-index. This paper completely determines which entries of the cd-index are nonnegative for all Eulerian posets. It also shows that there are no other lower or upper bounds on cd-coefficients (except for the coefficient of c^n)

    On the non-existence of an R-labeling

    Full text link
    We present a family of Eulerian posets which does not have any R-labeling. The result uses a structure theorem for R-labelings of the butterfly poset.Comment: 6 pages, 1 figure. To appear in the journal Orde
    corecore