5,587 research outputs found

    Electric field control of magnetization dynamics in ZnMnSe/ZnBeSe diluted-magnetic-semiconductor heterostructures

    Full text link
    We show that the magnetization dynamics in diluted magnetic semiconductors can be controlled separately from the static magnetization by means of an electric field. The spin-lattice relaxation (SLR) time of magnetic Mn2+ ions was tuned by two orders of magnitude by a gate voltage applied to n-type modulation-doped (Zn,Mn)Se/(Zn,Be)Se quantum wells. The effect is based on providing an additional channel for SLR by a two-dimensional electron gas (2DEG). The static magnetization responsible for the giant Zeeman spin splitting of excitons was not influenced by the 2DEG density

    Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields

    Full text link
    The exciton spin dynamics and polarization properties of the related emission are investigated in colloidal CdSe/CdS dot-in-rod (DiR) and spherical core/shell nanocrystal (NC) ensembles by magneto-optical photoluminescence (PL) spectroscopy in magnetic fields up to 15 T. It is shown that the degree of circular polarization (DCP) of the exciton emission induced by the magnetic field is affected by the NC geometry as well as the exciton fine structure and can provide information on nanorod orientation. A theory to describe the circular and linear polarization properties of the NC emission in magnetic field is developed. It takes into account phonon mediated coupling between the exciton fine structure states as well as the dielectric enhancement effect resulting from the anisotropic shell of DiR NCs. This theoretical approach is used to model the experimental results and allows us to explain most of the measured features. The spin dynamics of the dark excitons is investigated in magnetic fields by time-resolved photoluminescence. The results highlight the importance of confined acoustic phonons in the spin relaxation of dark excitons. The bare core surface as well as the core/shell interface give rise to an efficient spin relaxation channel, while the surface of core/shell NCs seems to play only a minor role.Comment: 18 pages, 15 figure

    Longitudinal and transversal spin dynamics of donor-bound electrons in fluorine-doped ZnSe: spin inertia versus Hanle effect

    Get PDF
    The spin dynamics of the strongly localized, donor-bound electrons in fluorine-doped ZnSe epilayers is studied by pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time, T1T_1, in a wide range of magnetic fields, temperatures, and pump densities. The T1T_1 time of the donor-bound electron spin of about 1.6 μ\mus remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8−451.8-45 K. The inhomogeneous spin dephasing time, T2∗=8−33T_2^*=8-33 ns, is measured using the resonant spin amplification and Hanle effects under pulsed and steady-state pumping, respectively. These findings impose severe restrictions on possible spin relaxation mechanisms.Comment: 10 pages, 7 figure

    Coexpression, copurification, crystallization and preliminary X-ray analysis of a complex of ARL2-GTP and PDE delta

    Get PDF
    The small GTPase ARL2 (from Mus musculus) and an effector protein, the δ subunit of human cGMP phosphodiesterase (hPDE δ), were coexpressed and copurified from Escherichia coli as a stable complex. Coexpression significantly increased the otherwise low yield of PDE δ production in E. coli. The complex, which contains ARL2 in the activated GTP-bound form, was crystallized in two forms. The first belongs to the monoclinic space group P21, with unit-cell parameters a = 48.1, b = 45.7, c = 74.7 Å, β = 94.0° and one complex (39 kDa) in the asymmetric unit. Cryocooled crystals diffract to 2.3 Å using synchrotron radiation. The micro-focused X-­ray beam at beamline ID13 (ESRF) allowed the use of very small crystals, which helped to overcome twinning and enabled the identification of a molecular-replacement solution. The second form recrystallized from the first one after several months. These crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 44.5, b = 65.4, c = 104.4 Å and one complex in the asymmetric unit. They diffracted to 1.8 Å using synchrotron radiation

    Optical control of electron spin coherence in CdTe/(Cd,Mg)Te quantum wells

    Full text link
    Optical control of the spin coherence of quantum well electrons by short laser pulses with circular or linear polarization is studied experimentally and theoretically. For that purpose the coherent electron spin dynamics in a n-doped CdTe/(Cd,Mg)Te quantum well structure was measured by time-resolved pump-probe Kerr rotation, using resonant excitation of the negatively charged exciton (trion) state. The amplitude and phase shifts of the electron spin beat signal in an external magnetic field, that are induced by laser control pulses, depend on the pump-control delay and polarization of the control relative to the pump pulse. Additive and non-additive contributions to pump-induced signal due to the control are isolated experimentally. These contributions can be well described in the framework of a two-level model for the optical excitation of the resident electron to the trion.Comment: 15 pages, 18 figure
    • …
    corecore