50 research outputs found
ChromaStarPy: A stellar atmosphere and spectrum modeling and visualization lab in python
We announce ChromaStarPy, an integrated general stellar atmospheric modeling
and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a
direct port of the ChromaStarServer (CSServ) Java modeling code described in
earlier papers in this series, and many of the associated JavaScript (JS)
post-processing procedures have been ported and incorporated into CSPy so that
students have access to ready-made "data products". A python integrated
development environment (IDE) allows a student in a more advanced course to
experiment with the code and to graphically visualize intermediate and final
results, ad hoc, as they are running it. CSPy allows students and researchers
to compare modeled to observed spectra in the same IDE in which they are
processing observational data, while having complete control over the stellar
parameters affecting the synthetic spectra. We also take the opportunity to
describe improvements that have been made to the related codes, ChromaStar
(CS), CSServ and ChromaStarDB (CSDB) that, where relevant, have also been
incorporated into CSPy. The application may be found at the home page of the
OpenStars project: http://www.ap.smu.ca/~ishort/OpenStars/ .Comment: See DOI zenodo.1095687. Accepted for publication in The Astrophysical
Journa
Improved spectral line treatment and stellar atmospheric modelling for ChromaStarPy
1 online resource (vii, 34 pages) : colour illustrationsIncludes abstract.Includes bibliographical references (page 34).ChromaStarPy is a stellar atmosphere and spectrum modeling code written in python designed to give good approximations of stellar spectra, whilst being easily accessible to students at a wide range of levels. We present several projects including: 1) Incorporating a more accurate interpolation of temperature-dependent partition functions; 2) Fitting more realistic limb darkening curves to surface intensity distributions; and 3) Using a new model atom treatment for spectral lines. The new limb darkening curves are based on least-square fitting of linear and quadratic limb darkening laws to the surface intensity distribution separately at each wavelength, and for the Johnson-Bessel filters. In doing so more accurate limb darkening coefficients (LDCs) are produced. The improved partition function treatment is based on fitting a cubic interpolation function to the variation with temperature and produces smooth variations of number densities of elements in each ionization stage with depth. The new model atom treatment allows us to improve the treatment of natural line broadening, producing line profiles that are closer to the observed line width
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
A novel Alzheimer disease locus located near the gene encoding tau protein
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE Δ4+ (10 352 cases and 9207 controls) and APOE Δ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE Δ4 status. Suggestive associations (P<1 Ă 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE Δ4+: 1250 cases and 536 controls; APOE Δ4-: 718 cases and 1699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 Ă 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 Ă 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (Pâ€1.3 Ă 10-8), frontal cortex (Pâ€1.3 Ă 10-9) and temporal cortex (Pâ€1.2 Ă 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 Ă 10-6) and temporal cortex (P=2.6 Ă 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
Multiancestry analysis of the HLA locus in Alzheimerâs and Parkinsonâs diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinsonâs disease (PD) and Alzheimerâs disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues