7,648 research outputs found
Beyond single-photon localization at the edge of a Photonic Band Gap
We study spontaneous emission in an atomic ladder system, with both
transitions coupled near-resonantly to the edge of a photonic band gap
continuum. The problem is solved through a recently developed technique and
leads to the formation of a ``two-photon+atom'' bound state with fractional
population trapping in both upper states. In the long-time limit, the atom can
be found excited in a superposition of the upper states and a ``direct''
two-photon process coexists with the stepwise one. The sensitivity of the
effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review
Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors
The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally
identical antineutrino detectors located at distances of 300 to 2000 meters
from the Daya Bay nuclear power complex. Each detector consists of three nested
fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to
overflow tanks on top of the detector to allow for thermal expansion of the
liquid. Antineutrinos are detected through the inverse beta decay reaction on
the proton-rich scintillator target. A precise and continuous measurement of
the detector's central target mass is achieved by monitoring the the fluid
level in the overflow tanks with cameras and ultrasonic and capacitive sensors.
In addition, the monitoring system records detector temperature and levelness
at multiple positions. This monitoring information allows the precise
determination of the detectors' effective number of target protons during data
taking. We present the design, calibration, installation and in-situ tests of
the Daya Bay real-time antineutrino detector monitoring sensors and readout
electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor
revisions to incorporate editorial feedback from JINS
Experimental Status of Neutrino Physics
After a fascinating phase of discoveries, neutrino physics still has a few
mysteries such as the absolute mass scale, the mass hierarchy, the existence of
CP violation in the lepton sector and the existence of right-handed neutrinos.
It is also entering a phase of precision measurements. This is what motivates
the NUFACT 11 conference which prepares the future of long baseline neutrino
experiments. In this paper, we report the status of experimental neutrino
physics. We focus mainly on absolute mass measurements, oscillation parameters
and future plans for oscillation experiments
A low-cost head and eye tracking system for realistic eye movements in virtual avatars
A virtual avatar or autonomous agent is a digital representation of a human being that can be controlled by either a human or an artificially intelligent computer system. Increasingly avatars are becoming realistic virtual human characters that exhibit human behavioral traits, body language and eye and head movements. As the interpretation of eye and head movements represents an important part of nonverbal human communication it is extremely important to accurately reproduce these movements in virtual avatars to avoid falling into the well-known ``uncanny valley''. In this paper we present a cheap hybrid real-time head and eye tracking system based on existing open source software and commonly available hardware. Our evaluation indicates that the system of head and eye tracking is stable and accurate and can allow a human user to robustly puppet a virtual avatar, potentially allowing us to train an A.I. system to learn realistic human head and eye movements
Inhibition of Decoherence due to Decay in a Continuum
We propose a scheme for slowing down decay into a continuum. We make use of a
sequence of ultrashort -pulses applied on an auxiliary transition of the
system so that there is a destructive interference between the two transition
amplitudes - one before the application of the pulse and the other after the
application of the pulse. We give explicit results for a structured continuum.
Our scheme can also inhibit unwanted transitions.Comment: 11 pages and 4 figures, submitted to Physical Review Letter
Polarization instabilities in a two-photon laser
We describe the operating characteristics of a new type of quantum oscillator
that is based on a two-photon stimulated emission process. This two-photon
laser consists of spin-polarized and laser-driven K atoms placed in a
high-finesse transverse-mode-degenerate optical resonator, and produces a beam
with a power of 0.2 W at a wavelength of 770 nm. We observe
complex dynamical instabilities of the state of polarization of the two-photon
laser, which are made possible by the atomic Zeeman degeneracy. We conjecture
that the laser could emit polarization-entangled twin beams if this degeneracy
is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure
Affine Subspace Representation for Feature Description
This paper proposes a novel Affine Subspace Representation (ASR) descriptor
to deal with affine distortions induced by viewpoint changes. Unlike the
traditional local descriptors such as SIFT, ASR inherently encodes local
information of multi-view patches, making it robust to affine distortions while
maintaining a high discriminative ability. To this end, PCA is used to
represent affine-warped patches as PCA-patch vectors for its compactness and
efficiency. Then according to the subspace assumption, which implies that the
PCA-patch vectors of various affine-warped patches of the same keypoint can be
represented by a low-dimensional linear subspace, the ASR descriptor is
obtained by using a simple subspace-to-point mapping. Such a linear subspace
representation could accurately capture the underlying information of a
keypoint (local structure) under multiple views without sacrificing its
distinctiveness. To accelerate the computation of ASR descriptor, a fast
approximate algorithm is proposed by moving the most computational part (ie,
warp patch under various affine transformations) to an offline training stage.
Experimental results show that ASR is not only better than the state-of-the-art
descriptors under various image transformations, but also performs well without
a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio
Non-Markovian quantum trajectories for spectral detection
We present a formulation of non-Markovian quantum trajectories for open
systems from a measurement theory perspective. In our treatment there are three
distinct ways in which non-Markovian behavior can arise; a mode dependent
coupling between bath (reservoir) and system, a dispersive bath, and by
spectral detection of the output into the bath. In the first two cases the
non-Markovian behavior is intrinsic to the interaction, in the third case the
non-Markovian behavior arises from the method of detection. We focus in detail
on the trajectories which simulate real-time spectral detection of the light
emitted from a localized system. In this case, the non-Markovian behavior
arises from the uncertainty in the time of emission of particles that are later
detected. The results of computer simulations of the spectral detection of the
spontaneous emission from a strongly driven two-level atom are presented
- …