26,851 research outputs found
The challenge of the chiral Potts model
The chiral Potts model continues to pose particular challenges in statistical
mechanics: it is ``exactly solvable'' in the sense that it satisfies the
Yang-Baxter relation, but actually obtaining the solution is not easy. Its free
energy was calculated in 1988 and the order parameter was conjectured in full
generality a year later.
However, a derivation of that conjecture had to wait until 2005. Here we
discuss that derivation.Comment: 22 pages, 3 figures, 29 reference
Oneness, Aspects, and the Neo-Confucians
Confucius gave counsel that is notoriously hard to follow: "What you do not wish for
yourself, do not impose on others" (Huang 1997: 15.24). People tend to be concerned
with themselves and to be indifferent to most others. We are distinct from others so our self-concern does not include them, or so it seems. Were we to realize this distinctness is merely apparent--that our true self includes others--Confucius's counsel would be easier to follow. Concern for our true self would extend concern beyond the narrow selves we appear to be. The neo-Confucians held just such a view. They espoused an identity with the universe and everything in it, arguing that this identity explains a natural concern for everyone and everything, not just for our narrow selves. However, many things in the universe differ from each other, that is, some have qualities others lack. If they are all one and the same thing then that one thing differs from itself. I will suggest that the objection can be answered with some metaphysical
innovation. I will address the objection by sketching a theory--call it the theory of aspects--that explains how numerically identical things can differ qualitatively
The order parameter of the chiral Potts model
An outstanding problem in statistical mechanics is the order parameter of the
chiral Potts model. An elegant conjecture for this was made in 1983. It has
since been successfully tested against series expansions, but as far as the
author is aware there is as yet no proof of the conjecture. Here we show that
if one makes a certain analyticity assumption similar to that used to derive
the free energy, then one can indeed verify the conjecture. The method is based
on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and
Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos
correcte
Corner transfer matrices in statistical mechanics
Corner transfer matrices are a useful tool in the statistical mechanics of
simple two-dimensinal models. They can be very effective way of obtaining
series expansions of unsolved models, and of calculating the order parameters
of solved ones. Here we review these features and discuss the reason why the
method fails to give the order parameter of the chiral Potts model.Comment: 18 pages, 4 figures, for Proceedings of Conference on Symmetries and
Integrability of Difference Equations. (SIDE VII), Melbourne, July 200
New Q matrices and their functional equations for the eight vertex model at elliptic roots of unity
The Q matrix invented by Baxter in 1972 to solve the eight vertex model at
roots of unity exists for all values of N, the number of sites in the chain,
but only for a subset of roots of unity. We show in this paper that a new Q
matrix, which has recently been introduced and is non zero only for N even,
exists for all roots of unity. In addition we consider the relations between
all of the known Q matrices of the eight vertex model and conjecture functional
equations for them.Comment: 20 pages, 2 Postscript figure
A critical Ising model on the Labyrinth
A zero-field Ising model with ferromagnetic coupling constants on the
so-called Labyrinth tiling is investigated. Alternatively, this can be regarded
as an Ising model on a square lattice with a quasi-periodic distribution of up
to eight different coupling constants. The duality transformation on this
tiling is considered and the self-dual couplings are determined. Furthermore,
we analyze the subclass of exactly solvable models in detail parametrizing the
coupling constants in terms of four rapidity parameters. For those, the
self-dual couplings correspond to the critical points which, as expected,
belong to the Onsager universality class.Comment: 25 pages, 6 figure
- …
