12,046 research outputs found
Spin operator matrix elements in the superintegrable chiral Potts quantum chain
We derive spin operator matrix elements between general eigenstates of the
superintegrable Z_N-symmetric chiral Potts quantum chain of finite length. Our
starting point is the extended Onsager algebra recently proposed by R.Baxter.
For each pair of spaces (Onsager sectors) of the irreducible representations of
the Onsager algebra, we calculate the spin matrix elements between the
eigenstates of the Hamiltonian of the quantum chain in factorized form, up to
an overall scalar factor. This factor is known for the ground state Onsager
sectors. For the matrix elements between the ground states of these sectors we
perform the thermodynamic limit and obtain the formula for the order
parameters. For the Ising quantum chain in a transverse field (N=2 case) the
factorized form for the matrix elements coincides with the corresponding
expressions obtained recently by the Separation of Variables Method.Comment: 24 pages, 1 figur
The order parameter of the chiral Potts model
An outstanding problem in statistical mechanics is the order parameter of the
chiral Potts model. An elegant conjecture for this was made in 1983. It has
since been successfully tested against series expansions, but as far as the
author is aware there is as yet no proof of the conjecture. Here we show that
if one makes a certain analyticity assumption similar to that used to derive
the free energy, then one can indeed verify the conjecture. The method is based
on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and
Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos
correcte
New Q matrices and their functional equations for the eight vertex model at elliptic roots of unity
The Q matrix invented by Baxter in 1972 to solve the eight vertex model at
roots of unity exists for all values of N, the number of sites in the chain,
but only for a subset of roots of unity. We show in this paper that a new Q
matrix, which has recently been introduced and is non zero only for N even,
exists for all roots of unity. In addition we consider the relations between
all of the known Q matrices of the eight vertex model and conjecture functional
equations for them.Comment: 20 pages, 2 Postscript figure
Bethe Equation of -model and Eigenvalues of Finite-size Transfer Matrix of Chiral Potts Model with Alternating Rapidities
We establish the Bethe equation of the -model in the -state
chiral Potts model (including the degenerate selfdual cases) with alternating
vertical rapidities. The eigenvalues of a finite-size transfer matrix of the
chiral Potts model are computed by use of functional relations. The
significance of the "alternating superintegrable" case of the chiral Potts
model is discussed, and the degeneracy of -model found as in the
homogeneous superintegrable chiral Potts model.Comment: Latex 25 pages; Typos corrected, Minor changes for clearer
presentation, References added-Journal versio
Analyticity and Integrabiity in the Chiral Potts Model
We study the perturbation theory for the general non-integrable chiral Potts
model depending on two chiral angles and a strength parameter and show how the
analyticity of the ground state energy and correlation functions dramatically
increases when the angles and the strength parameter satisfy the integrability
condition. We further specialize to the superintegrable case and verify that a
sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix
We discuss an algebraic method for constructing eigenvectors of the transfer
matrix of the eight vertex model at the discrete coupling parameters. We
consider the algebraic Bethe ansatz of the elliptic quantum group for the case where the parameter satisfies for arbitrary integers , and . When or
is odd, the eigenvectors thus obtained have not been discussed previously.
Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin
chain, some of which are shown to be related to the loop algebra
symmetry of the XXZ spin chain. We show that the dimension of some degenerate
eigenspace of the XYZ spin chain on sites is given by , if
is an even integer. The construction of eigenvectors of the transfer matrices
of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices
Eigenvectors of Baxter-Bazhanov-Stroganov \tau^{(2)}(t_q) model with fixed-spin boundary conditions
The aim of this contribution is to give the explicit formulas for the
eigenvectors of the transfer-matrix of Baxter-Bazhanov-Stroganov (BBS) model
(N-state spin model) with fixed-spin boundary conditions. These formulas are
obtained by a limiting procedure from the formulas for the eigenvectors of
periodic BBS model. The latter formulas were derived in the framework of the
Sklyanin's method of separation of variables. In the case of fixed-spin
boundaries the corresponding T-Q Baxter equations for the functions of
separated variables are solved explicitly. As a particular case we obtain the
eigenvectors of the Hamiltonian of Ising-like Z_N quantum chain model.Comment: 14 pages, paper submitted to Proceedings of the International
Workshop "Classical and Quantum Integrable Systems" (Dubna, January, 2007
Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field
We study all known and as yet unknown forces between two neutral atoms,
modeled as three dimensional harmonic oscillators, arising from mutual
influences mediated by an electromagnetic field but not from their direct
interactions. We allow as dynamical variables the center of mass motion of the
atom, its internal degrees of freedom and the quantum field treated
relativistically. We adopt the method of nonequilibrium quantum field theory
which can provide a first principle, systematic and unified description
including the intrinsic field fluctuations and induced dipole fluctuations. The
inclusion of self-consistent back-actions makes possible a fully dynamical
description of these forces valid for general atom motion. In thermal
equilibrium we recover the known forces -- London, van der Waals and
Casimir-Polder forces -- between neutral atoms in the long-time limit but also
discover the existence of two new types of interatomic forces. The first, a
`nonequilibrium force', arises when the field and atoms are not in thermal
equilibrium, and the second, which we call an `entanglement force', originates
from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure
Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'
Earlier this year Chan extended the low-density series for the hard-squares
partition function to 92 terms. Here we analyse this extended
series focusing on the behaviour at the dominant singularity which lies
on on the negative fugacity axis. We find that the series has a confluent
singularity of order 2 at with exponents and
. We thus confirm that the exponent has the exact
value as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio
Scattering Rule in Soliton Cellular Automaton associated with Crystal Base of
In terms of the crystal base of a quantum affine algebra ,
we study a soliton cellular automaton (SCA) associated with the exceptional
affine Lie algebra . The solitons therein are labeled
by the crystals of quantum affine algebra . The scatteing rule
is identified with the combinatorial matrix for -crystals.
Remarkably, the phase shifts in our SCA are given by {\em 3-times} of those in
the well-known box-ball system.Comment: 25 page
- …