9,210 research outputs found

    Bethe Ansatz Equations for the Broken ZNZ_{N}-Symmetric Model

    Get PDF
    We obtain the Bethe Ansatz equations for the broken ZN{\bf Z}_{N}-symmetric model by constructing a functional relation of the transfer matrix of LL-operators. This model is an elliptic off-critical extension of the Fateev-Zamolodchikov model. We calculate the free energy of this model on the basis of the string hypothesis.Comment: 43 pages, latex, 11 figure

    Diamagnetic susceptibility obtained from the six-vertex model and its implications for the high-temperature diamagnetic state of cuprate superconductors

    Full text link
    We study the diamagnetism of the 6-vertex model with the arrows as directed bond currents. To our knowledge, this is the first study of the diamagnetism of this model. A special version of this model, called F model, describes the thermal disordering transition of an orbital antiferromagnet, known as d-density wave (DDW), a proposed state for the pseudogap phase of the high-Tc cuprates. We find that the F model is strongly diamagnetic and the susceptibility may diverge in the high temperature critical phase with power law arrow correlations. These results may explain the surprising recent observation of a diverging low-field diamagnetic susceptibility seen in some optimally doped cuprates within the DDW model of the pseudogap phase.Comment: 4.5 pages, 2 figures, revised version accepted in Phys. Rev. Let

    Avalanche Collapse of Interdependent Network

    Get PDF
    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.Comment: 4 pages, 5 figure

    Critical dynamics of the k-core pruning process

    Full text link
    We present the theory of the k-core pruning process (progressive removal of nodes with degree less than k) in uncorrelated random networks. We derive exact equations describing this process and the evolution of the network structure, and solve them numerically and, in the critical regime of the process, analytically. We show that the pruning process exhibits three different behaviors depending on whether the mean degree of the initial network is above, equal to, or below the threshold _c corresponding to the emergence of the giant k-core. We find that above the threshold the network relaxes exponentially to the k-core. The system manifests the phenomenon known as "critical slowing down", as the relaxation time diverges when tends to _c. At the threshold, the dynamics become critical characterized by a power-law relaxation (1/t^2). Below the threshold, a long-lasting transient process (a "plateau" stage) occurs. This transient process ends with a collapse in which the entire network disappears completely. The duration of the process diverges when tends to _c. We show that the critical dynamics of the pruning are determined by branching processes of spreading damage. Clusters of nodes of degree exactly k are the evolving substrate for these branching processes. Our theory completely describes this branching cascade of damage in uncorrelated networks by providing the time dependent distribution function of branching. These theoretical results are supported by our simulations of the kk-core pruning in Erdos-Renyi graphs.Comment: 12 pages, 10 figure

    Bootstrap Percolation on Complex Networks

    Full text link
    We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this process with respect to two parameters: ff, the fraction of vertices initially activated, and pp, the fraction of undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Avalanches of activations increase in size as this second critical point is approached, finally diverging at this threshold. We describe the existence of a special critical point at which this second transition first appears. In networks with degree distributions whose second moment diverges (but whose first moment does not), we find a qualitatively different behavior. In this case the giant active component appears for any f>0f>0 and p>0p>0, and the discontinuous transition is absent. This means that the giant active component is robust to damage, and also is very easily activated. We also formulate a generalized bootstrap process in which each vertex can have an arbitrary threshold.Comment: 9 pages, 3 figure

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps
    • …
    corecore