1,102 research outputs found

    Microbunched Electron Cooling with Amplification Cascades

    Full text link
    The Microbunched Electron Cooling (MBEC) is a promising cooling technique that can find applications in future hadron and electron-ion colliders to counteract intrabeam scattering that limits the maximum achievable luminosity of the collider. To minimize the cooling time, one would use amplification cascades consisting of a drift section followed by a magnetic chicane. In this paper, we first derive and optimize the gain factor in an amplification section for a simplified one-dimensional model of the beam. We then deduce the cooling rate of a system with one and two amplification cascades. We also analyze the noise effects that counteract the cooling process through the energy diffusion in the hadron beam. Our analytical formulas are confirmed by numerical simulations for a set of model parameters.Comment: arXiv admin note: text overlap with arXiv:1806.0278

    A novel fast simulation technique for axisymmetric PWFA configurations in the blowout regime

    Full text link
    In the blowout regime of plasma wakefield acceleration (PWFA), which is the most relevant configuration for current and future applications and experiments, the plasma flow that is excited by the ultra-relativistic drive beam is highly nonlinear. Thus, fast and accurate simulations codes are indispensable tools in the study of this extremely important problem. We have developed a novel algorithm that deals with the propagation of axisymmetric bunches of otherwise arbitrary profile through a cold plasma of uniform density. In contrast to the existing PWFA simulation tools, our code PLEBS (PLasma-Electron Beam Simulations) uses a new computational scheme which ensures that the transverse and longitudinal directions are completely decoupled---a feature which significantly enhances the speed and robustness of the new method. Our numerical results are benchmarked against the QuickPic code and excellent agreement is established between the two approaches. Moreover, our new technique provides a very convenient framework for studying issues such as beam loading and short-range wakefields within the plasma cavity

    General scheme for stable single and multiatom nanomagnets according to symmetry selection rules

    Get PDF
    At low temperature, information can be stored in the orientation of the localized magnetic moment of an adatom. However, scattering of electrons and phonons with the nanomagnet leads its state to have incoherent classical dynamics and might cause fast loss of the encoded information. Recently, it has been understood that such scattering obeys certain selection rules due to the symmetries of the system. By analyzing the point-group symmetry of the surface, the time-reversal symmetry and the magnitude of the adatom effective spin, we identify which nanomagnets configurations are to be avoided and which are promising to encode a stable bit. A new tool of investigation is introduced and exploited: the quasi-spin quantum number. By means of this tool, our results are easily generalized to a broad class of bipartite cluster configurations where adatoms are coupled through Heisenberg-like interactions. Finally, to make contact with the experiments, numerical simulations have been performed to show how such stable configurations respond to typical scanning tunneling microscopy measurements.Comment: 15 pages, 7 figures. Published versio

    Symmetry effects on spin switching of adatoms

    Get PDF
    Highly symmetric magnetic environments have been suggested to stabilize the magnetic information stored in magnetic adatoms on a surface. Utilized as memory devices such systems are subjected to electron tunneling and external magnetic fields. We analyze theoretically how such perturbations affect the switching probability of a single quantum spin for two characteristic symmetries encountered in recent experiments and suggest a third one that exhibits robust protection against surface induced spin flips. Further we illuminate how the switching of an adatom spin exhibits characteristic behavior with respect to low energy excitations from which the symmetry of the system can be inferred
    • …
    corecore