21 research outputs found

    Adjuvant breast cancer chemotherapy during late-trimester pregnancy: not quite a standard of care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of breast cancer during pregnancy was formerly considered an indication for abortion. The pendulum has since swung to the other extreme, with most reviews now rejecting termination while endorsing immediate anthracycline-based therapy for any pregnant patient beyond the first trimester. To assess the evidence for this radical change in thinking, a review of relevant studies in the fields of breast cancer chemotherapy, pregnancy, and drug safety was conducted.</p> <p>Discussion</p> <p>Accumulating evidence for the short-term safety of anthracycline-based chemotherapy during late-trimester pregnancy represents a clear advance over the traditional norm of therapeutic abortion. Nonetheless, the emerging orthodoxy favoring routine chemotherapy during gestation should continue to be questioned on several grounds: (1) the assumed difference in maternal survival accruing from chemotherapy administered earlier – i.e., during pregnancy, rather than after delivery – has not been quantified; (2) the added survival benefit of adjuvant cytotoxic therapy prescribed within the hormone-rich milieu of pregnancy remains presumptive, particularly for ER-positive disease; (3) the maternal survival benefit associated with modified adjuvant regimens (e.g., weekly schedules, omission of taxanes, etc.) has not been proven equivalent to standard (e.g., post-delivery) regimens; and (4) the long-term transplacental and transgenerational hazards of late-trimester chemotherapy are unknown.</p> <p>Summary</p> <p>Although an incrementally increased risk of cancer-specific mortality is impossible to exclude, mothers who place a high priority on the lifelong well-being of their progeny may be informed that deferring optimal chemotherapy until after delivery is still an option to consider, especially in ER-positive, node-negative and/or last-trimester disease.</p

    Chronic coagulopathy in a patient with argininosuccinase deficiency

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147215/1/jimd0109.pd

    Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome

    No full text
    Prader–Willi syndrome (PWS) is a neurobehavioral disorder manifested by infantile hypotonia and feeding difficulties in infancy, followed by morbid obesity secondary to hyperphagia. It is caused by deficiency of paternally expressed transcript(s) within the human chromosome region 15q11.2. PWS patients harboring balanced chromosomal translocations with breakpoints within small nuclear ribonucleoprotein polypeptide N ( SNRPN ) have provided indirect evidence for a role for the imprinted C/D box containing small nucleolar RNA (snoRNA) genes encoded downstream of SNRPN . In addition, recently published data provide strong evidence in support of a role for the snoRNA SNORD116 cluster (HBII-85) in PWS etiology. In this study, we performed detailed phenotypic, cytogenetic, and molecular analyses including chromosome analysis, array comparative genomic hybridization (array CGH), expression studies, and single-nucleotide polymorphism (SNP) genotyping for parent-of-origin determination of the 15q11.2 microdeletion on an 11-year-old child expressing the major components of the PWS phenotype. This child had an ∼236.29 kb microdeletion at 15q11.2 within the larger Prader–Willi/Angelman syndrome critical region that included the SNORD116 cluster of snoRNAs. Analysis of SNP genotypes in proband and mother provided evidence in support of the deletion being on the paternal chromosome 15. This child also met most of the major PWS diagnostic criteria including infantile hypotonia, early-onset morbid obesity, and hypogonadism. Identification and characterization of this case provide unequivocal evidence for a critical role for the SNORD116 snoRNA molecules in PWS pathogenesis. Array CGH testing for genomic copy-number changes in cases with complex phenotypes is proving to be invaluable in detecting novel alterations and enabling better genotype–phenotype correlations
    corecore