38 research outputs found

    Protective effects of long-term administration of Ziziphus jujuba fruit extract on cardiovascular responses in L-NAME hypertensive rats

    Get PDF
    Objective: Ziziphus jujuba stimulates the release of nitric oxide (NO).  Because NO is involved in cardiovascular regulations, in this study the effects of hydroalcoholic extract of Z. jujuba on cardiovascular responses in acute NG-nitro-L-arginine methyl ester (L-NAME) hypertensive rats were evaluated. Materials and Methods: Rats were divided into 6 group (n=6): 1) saline, 2) L-NAME received (10mg/kg) intravenously, 3) sodium nitroprusside (SNP) (50”g/kg)+L-NAME group received SNP before L-NAME and 4-6) three groups of Z. jujuba (100, 200 and 400mg/kg) that treated for four weeks and on the 28th day, L-NAME was injected. Femoral artery and vein were cannulated for recording cardiovascular responses and drug injection, respectively. Systolic blood pressure (SBP), Mean arterial pressure (MAP) and heart rate (HR) were recorded continuously. Maximal changes (∆) of SBP, MAP and HR were calculated and compared to control and L-NAME groups. Results: In L-NAME group, maximal ΔSBP (L-NAME: 44.15±4.0 mmHg vs control: 0.71±2.1 mmHg) and ΔMAP (L-NAME: 40.8±4.0 mmHg vs control: 0.57±1.6 mmHg) significantly increased (p0.05). All doses of Z. jujuba attenuated maximal ∆SBP and ∆MAP induced by L-NAME but only the lowest dose (100 mg/kg) had significant effects (ΔSBP: 20.36±5.6 mmHg vs L-NAME: 44.1±4.0 mmHg and ΔMAP: 20.8±4.5 mmHg vs L-NAME: 40.8±3.8 mmHg (p0.05). Conclusion: Because long-term consumption of Z. jujuba extract, especially its lowest dose, attenuated cardiovascular responses induced by L-NAME, we suggest that Z. jujuba has potential beneficial effects in prevention of hypertension induced by NO deficiency

    A comparison of the effects of Portulaca oleracea seeds hydro-alcoholic extract and Vitamin C on biochemical, hemodynamic and functional parameters in cardiac tissue of rats with subclinical hyperthyroidism

    Get PDF
    Objective: The present study was performed to evaluate the effects of hydro-alcoholic extract of Portulaca oleracea (P. oleracea) seeds and Vitamin C on biochemical and hemodynamic parameters in cardiac tissue of rats with subclinical hyperthyroidism. Materials and Methods: Forty eight male rats were divided into six groups of 8 and treated for 4 weeks. T4 group received daily injection of levothyroxine sodium (20 ÎŒg/kg) and control group was given daily injection of saline. T4-Po groups were given T4 plus 100, 200, and 400 mg/kg of P. oleracea seeds extract in drinking water daily. T4-Vit C group received T4 plus daily injection of Vitamin C (100 mg/kg). At the end of the experiment, body weight, serum free T4 level, left ventricular developed pressure (LVDP), malondialdehyde (MDA) and total thiol levels were measured. Results: Free T4 levels were increased in all groups that were treated with T4. Weight gain was decreased in T4 and T4-Po100 groups compared to control group (p Conclusion: The results showed that P. oleracea extract has a protective effect on cardiac dysfunction due to subclinical hyperthyroidism induced by levothyroxine sodium in rats

    Association of MGLL Intronic C>T Single Nucleotide Polymorphism (rs782440) with Borderline Personality Disorder: A Case-Control Study

    Get PDF
    Objective: From the perspective of etiology, borderline personality disorder (BPD) is a multifactorial and complexdisorder, hence our understanding about the molecular basis and signaling of this disorder is extremely limited.The purpose of this study was evaluating the relationship between BPD and the Monoacylglycerol lipase (MGLL)polymorphism rs782440 in the population of Hamadan, Iran.Materials and Methods: In this case-control study, 106 participants including 53 patients with BPD and 53healthy control subjects were selected by psychiatrists in the Department of Psychiatry at Farshchian SinaHospital in Hamadan. The BPD patients were selected based on the Diagnostic and Statistical Manual of MentalDisorders (DSM-5) form for diagnosing BPD patients. For genotyping, polymerase chain reaction (PCR) wasused to amplify the desired region including the MGLL intronic C>T single nucleotide polymorphism (SNP)(rs782440) and afterward the amplicon was sequenced using the Sanger sequencing method. To determine thegenotype of these patients, their sequences were aligned with the reference sequence of MGLL through the CLCgenomic workbench software.Results: The results indicated that the frequency of TT in comparison to the CC genotype was significantly different(P=0.003) and the risk of BPD in change from the TT genotype to CC genotype was increased by 6.679%. Regardingthe frequency of allele in this group, no significant difference was observed.Conclusion: This paper, has studied and reports for the first time, the association between MGLL SNP (rs782440) withBPD. The findings of the current research revealed that the TT genotype increases the risk of BPD compared to the CCgenotype. Considering the lack of a suitable diagnostic biomarker for BPD, using this potential biomarker in the nearfuture can be promising

    Luteolin Reduced the Traumatic Brain Injury-Induced Memory Impairments in Rats: Attenuating Oxidative Stress and Dark Neurons of Hippocampus

    Get PDF
    Traumatic Brain Injury (TBI) is generally recognized as a major risk factor for memory impairments and Alzheimer’s disease (AD). In this experimental study, our aim was to investigate the ameliorating effects of luteolin (LUT) on the memory impairments, oxidative stress, and histopathological changes induced by TBI in rats. The adult male Wistar rats were randomly divided into six groups including: Control (Co), sham, TBI, TBI+LUT (10 mg/kg), TBI +LUT (25 mg/kg), TBI +LUT (50 mg/kg). To evaluate the protective effects of LUT on the memory of the rats, passive avoidance test using shuttle box was performed. Finally, the animals were anesthetized, and the brain tissues were removed and analyzed for oxidative stress parameters. Using histological methods, dark neuron production was also evaluated. There was a significant decrease in the latency time to enter the dark compartment in passive avoidance test in TBI animals. This latency time was significantly increased in TBI+LUT (25 mg/kg) and TBI+LUT (50 mg/kg) groups along with significant increases in superoxide dismutase and catalase activity in the hippocampal zone and a decrease in malondialdehyde (MDA). The number of dark neurons in the hippocampus decreased with all three doses of LUT. In the present study, LUT showed neuroprotective effects, improvement in learning and reduction in memory impairment induced by TBI in rats. Protection against oxidative stress might be a possible mechanism behind these effects. Further works are necessary to work out if LUT is potentially a suitable therapeutic candidate for neural disorders

    Abstract 1122‐000051: Isolated Diplacusis Due to Ipsilateral Temporal Lobe Infarction: A Case Report

    No full text
    Introduction: Double hearing or Diplacusis is a synchronous double perception of a sound and can have Binauralis or Monauralis pattern, with inner ear disorders being the main culprit [1]. Other forms of Auditory illusions have been reported as a co‐manifestation of stroke syndromes, but none as an isolated presentation [1][2]. This is a case of a 77‐year‐old male with acute onset isolated Diplacusis in a patient due to a right temporal lobe ischemic infarct. To our knowledge, this is the first case report of an isolated diplacusis due to cortical infarct. Methods: A case presentation with Pubmed search of review articles and case reports. Results: The patient had a past medical history of sensorineural deafness in his left ear. He described any sound heard as the same quality but occurring with an echo heard a fraction of a second later in his right ear. There was no decreased hearing quality or tinnitus reported in his right ear. His drug screen test was negative. His examination was only remarkable for a sensorineural hearing loss pattern on his left ear. His (NIHSS) was zero, and no other cranial nerve abnormalities were detected. His MRI was significant for a punctate restricted diffusion on the right temporal lobe, resembling an ischemic infarct (Figure). Conclusions: Isolated diplacusis can present as acute ischemic stroke in the temporal lobe. Further studies are needed to understand its pathophysiology

    Identification of Trichoderma Species Using Partial Sequencing of nrRNA and tef1α Genes with Report of Trichoderma capillare in Iran Mycoflore

    No full text
    Introduction: Trichoderma is monophyletic (16), with teleomorphs in the genus Hypocrea. Some cryptic Trichoderma species are hidden within morphological species complexes and can only be elucidated by in-depth molecular studies. The genealogical concordance phylogenetic species recognition (GCPSR) using several non-linked genes are needed to give accurate identification of Trichoderma spp. (6). Although the ITS region has been successfully used for species delimitation of Trichoderma and Hypocrea (5), but, it is not sufficient for accurate identification of some species. Translation elongation factor 1α gene (tef1α) is a reliable barcode for Fusarium (9), Trichoderma and Hypocrea (5). Here, ITS and tef1α genes were selected as candidate DNA barcodes to identify Trichoderma isolates. Material and methods: 40 Trichoderma isolates used in this study were from a fungal collection archived in the plant pathology laboratory in the Department of Plant Protection at the Shahid Chamran University of Ahvaz. Spore suspension (105/ml) prepared from single spore cultures of each Trichoderma isolates was added into flasks containing PDB medium. The flasks were shaken at 180 rpm for 10-15 days at 28ÂșC and the biomass was harvested by passing through sterilized filter papers. The mycelia were freeze-dried (Freeze-Dryer, Alpha 1-2LD Plus, Christ) and powdered in the mortar containing liquid nitrogen by pestle. The genomic DNA was isolated according to modified method established by Raeder and Broda (21). The universal primers (ITS1–F; 5'-TCCGTAGGTGAACCTGCGG-3' and ITS4-R; 5'-TCCTCCGCTTATTGATATGC-3') were employed for amplifying around 700bp from 18s, ITS1, 5.8s, ITS2 and 28s rDNA regions (27). The specific primers (tef1α71-f; 5'-CAAAATGGGTAAGGAGGASAAGAC-3' and tef1997-R; 5'-CAGTACCGGCRGCRATRATSAG-3') were employed for amplifying around 950bp from tef1α gene (24). PCR products were purified through ethanol-precipitation method and then sequenced using forward and reverse primers by Macrogen Company. The Sequences were edited and assembled using BioEdit v. 7.0.9.0 (10) and DNA Baser Sequence Assembeler v4 programs (2013, Heracle BioSoft, www.DnaBaser.com), respectively. These sequences were submit-queried against the NCBI non-redundant database and related to known DNA sequences by BLASTn algorithm to assign putative identity. They also were subjected to the TrichO Key (5) and TrichoBLAST (15) for more characterization. The phylogenetic tree was constructed through maximum likelihood analysis based on tef1α sequence under K2+G model. The tree was rooted to close species of N. macroconidialis. Result and Discussion: Approximately 550 and 850 bases of the ITS and tef1α regions were sequenced from the isolates studied and then deposited in the GenBank (Table 2). The annotation of indexed sequences showed which multiple insertion-type frame shifts have interestingly occurred into the reading frame of tef1α gene belonging to isolate of T. capillare Isf-7 (Fig. 3). To identify isolates of Trichoderma, ITS and tef1α sequences were subjected to the TrichO Key (5), TrichoBLAST (15) and BLASTn Search. The analysis of ITS and tef1α sequences (Table 2, Fig. 2), in combination with morphology (Table 1), showed which the isolates place in seven species as follow: T. harzianum Rifai, T. virens (J.H. Mill., Giddens & A.A. Foster) Arx, T. pleuroticola Yu & Park, T. asperellum Samuels, Lieckf & Nirenberg, T. koningiopsis Oudem., T. brevicompactum Kraus, Kubicek & Gams and T. capillare Samuels & Kubicek. In BLASTn search, ITS and tef1α regions separately provided unambiguous identification for isolates of T. virens, T. koningiopsis and T. brevicompactum while ITS region provided ambiguous identification for Isolates of Trichoderma harzianum, T. capillare, T. pleuroticola and T. asperellum. Here, tef1α region could provide more accurate identification as good DNA barcoding (Table 2). The isolates showed the sequence identity ranging from 96 to 100% for tef1α locus and 88 to 99% for ITS locus. Different identities related to ITS and tef1α genes indicated that the single gene identification is not accurate, particularly for Trichoderma species, if the identification is based on ITS regions (4). In phylogenetic tree (Fig. 2), the isolates surveyed generated strongly supported clades for each species, distinct from other species. Among the species identified, T. capillare is the first report for Iran mycoflora. This species was firstly described by Samuels et al. (22) and phylogenetically delimited from other species of Longibrachiatum section. Conclusions: Here, of seven species of Trichoderma identified, the species of T. capillare is newly reported in Iran. Our studies demonstrate ultimately that, despite ITS region, tef1α gene is quite reliable in identification and phylogeny of Trichoderma species. Material and methods: 40 Trichoderma isolates used in this study were from a fungal collection archived in the plant pathology laboratory in the Department of Plant Protection at the Shahid Chamran University of Ahvaz. Spore suspension (105/ml) prepared from single spore cultures of each Trichoderma isolates was added into flasks containing PDB medium. The mycelia were harvested from the growth medium by washing biomass with sterilized distilled water on filter papers. Mycelial biomasses were freeze-dried and then powdered into mortar containing liquid nitrogen by pestle. The genomic DNA was isolated according to modified method established by Reader and Broda (1985). The universal primers (ITS1–F; 5'-TCCGTAGGTGAACCTGCGG-3' and ITS4-R; 5'-TCCTCCGCTTATTGATATGC-3') were employed for amplifying around 700bp from 18s, ITS1, 5.8s, ITS2 and 28s rDNA regions. The specific primers (tef1α71-f; 5'-CAAAATGGGTAAGGAGGASAAGAC-3' and tef1997-R; 5'-CAGTACCGGCRGCRATRATSAG-3') were employed for amplifying around 950bp from exon1 to exon6 regions of tef1α gene containing introns 1 to 5 (Shoukouhi and Bisset, 2008). PCR products were purified through ethanol-precipitation method and then sequenced using forward and reverse primers by Macrogen Company. The Sequences were edited and assembled using BioEdit v. 7.0.9.0 (Hall 1999) and DNA Baser Sequence Assembeler v4 programs (2013, Heracle BioSoft, www.DnaBaser.com), respectively. These sequences were submit-queried against the NCBI non-redundant database and related to known DNA sequences by BLASTn algorithm to assign putative identity. They also were subjected to the TrichO Key (Druzhinina et al. 2005) and TrichoBLAST (Kopchinskiy et al. 2005) for more detection. Result and Discussion: Approximately 550 and 850 bases of the ITS and tef1α regions were sequenced from the isolates studied and then deposited in the GenBank. There was no ITS sequence of T. capillare in databases and we here indexed it and more sequence from its tef1α gene in GenBank. The annotation of indexed sequences showed which multiple insertion-type frame shifts have interestingly occurred into reading frame of tef1α gene belong to T. capillare Isf-7 isolate (Fig. 1). To identify isolates of Trichoderma, ITS and tef1α sequences were subjected to the TrichO Key (Druzhinina et al. 2005), TrichoBLAST ( Kopchinskiy et al. 2005) and BLASTn Search. The analysis and comparison of ITS and tef1α data with reference sequences in ISTHT and GenBank showed which the isolates place in seven species as follow: T. harzianum Rifai, T. virens (J.H. Mill., Giddens & A.A. Foster) Arx, T. pleuroticola Yu & Park, T. asperellum Samuels, Lieckf & Nirenberg, T. koningiopsis Oudem., T. brevicompactum Kraus, Kubicek & Gams and T. capillare Samuels & Kubicek. In BLASTn search, ITS and tef1α regions separately provided unambiguous identification for isolates of T. virens, T. koningiopsis and T. brevicompactum while ITS region provided ambiguous identification for Isolates of Trichoderma harzianum, T. capillare Samuels & Kubicek, T. pleuroticola and T. asperellum. Here, tef1α region could provide more accurate identification as good DNA barcoding (Table 2). The isolates showed the sequence identity ranging from 96 to 100% for tef1α locus and 88 to 99% for ITS locus. Different identities related to ITS and tef1α genes indicated that single gene identification is not accurate, particularly for Trichoderma species, if the identification is based on ITS regions (Druzhinina and Kubicek, 2005). Among the species identified, T. capillare is the first report for Iran mycoflora. This species was firstly described by Samuels et al. (2012) and phylogenetically associated with other species of Longibrachiatum Clade. Conclusions: Here, of seven species of Trichoderma identified, the species of T. capillare is newly reported in Iran. Our studies demonstrate ultimately that, despite ITS region, tef1α gene is quite reliable in identification and phylogeny of Trichoderma species

    Familial mirror movements over five generations

    No full text

    Direct stroke unit admission of intravenous tissue plasminogen activator: safety, clinical outcome, and hospital cost savings

    Get PDF
    Background: In the USA, stable intravenous tissue plasminogen activator (IV tPA) patients have traditionally been cared for in an intensive care unit (ICU). We examined the safety of using an acuity-adaptable stroke unit (SU) to manage IV tPA patients. Methods: We conducted an observational study of consecutive patients admitted to our acuity-adaptable SU over the first 3 years of operation. Safety was assessed by symptomatic intracerebral hemorrhage (sICH) rates, systemic hemorrhage (SH) rates, tPA-related deaths, and transfers from SU to ICU; cost savings and length of stay (LOS) were determined. Results: We admitted 333 IV tPA patients, of which 302 were admitted directly to the SU. A total of 31 (10%) patients had concurrent systemic hemodynamic or pulmonary compromise warranting direct ICU admission. There were no differences in admission National Institutes of Health Stroke Scale scores between SU and ICU patients (9.0 versus 9.5, respectively). Overall sICH rate was 3.3% ( n = 10) and SH rate was 2.9 ( n = 9), with no difference between SU and ICU patients. No tPA-related deaths occurred, and no SU patients required transfer to the ICU. Estimated hospital cost savings were US$362,400 for ‘avoided’ ICU days, and hospital LOS decreased significantly ( p = 0.001) from 9.8 ± 15.6 days (median 5) in year 1, to 5.2 ± 4.8 days (median 3) by year 3. Conclusions: IV tPA patients may be safely cared for in a SU when nurses undergo extensive education to ensure clinical competence. Use of the ICU solely for monitoring may constitute significant overuse of system resources at an expense that is not associated with additional safety benefit
    corecore