705 research outputs found
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
Astro-H will be the first X-ray observatory to employ a high-resolution
microcalorimeter, capable of measuring the shift and width of individual
spectral lines to the precision necessary for estimating the velocity of the
diffuse plasma in galaxy clusters. This new capability is expected to bring
significant progress in understanding the dynamics, and therefore the physics,
of the intracluster medium. However, because this plasma is optically thin,
projection effects will be an important complicating factor in interpreting
future Astro-H measurements. To study these effects in detail, we performed an
analysis of the velocity field from simulations of a galaxy cluster
experiencing gas sloshing, and generated synthetic X-ray spectra, convolved
with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the
sloshing motions produce velocity signatures that will be observable by Astro-H
in nearby clusters: the shifting of the line centroid produced by the
fast-moving cold gas underneath the front surface, and line broadening produced
by the smooth variation of this motion along the line of sight. The line shapes
arising from inviscid or strongly viscous simulations are very similar,
indicating that placing constraints on the gas viscosity from these
measurements will be difficult. Our spectroscopic analysis demonstrates that,
for adequate exposures, Astro-H will be able to recover the first two moments
of the velocity distribution of these motions accurately, and in some cases
multiple velocity components may be discerned. The simulations also confirm the
importance of accurate treatment of PSF scattering in the interpretation of
Astro-H/SXS spectra of cluster plasmas.Comment: 27 pages, 20 figures, submitted to the Astrophysical Journa
The Dark Matter Distribution in Galaxy Cluster Cores
Determining the structure of galaxy clusters is essential for an
understanding of large scale structure in the universe, and may hold important
clues to the identity and nature of dark matter particles. Moreover, the core
dark matter distribution may offer insight into the structure formation
process. Unfortunately, cluster cores also tend to be the site of complicated
astrophysics. X-ray imaging spectroscopy of relaxed clusters, a standard
technique for mapping their dark matter distributions, is often complicated by
the presence of their putative ``cooling flow'' gas, and the dark matter
profile one derives for a cluster is sensitive to assumptions made about the
distribution of this gas. Here we present a statistical analysis of these
assumptions and their effect on our understanding of dark matter in galaxy
clusters.Comment: Poster contribution to the 13th Annual Astrophysics Conference in
Maryland, The Emergence of Cosmic Structure; 4 page
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor
The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane
instruments on the Chandra X-ray Observatory. During initial radiation-belt
passes, the exposed ACIS suffered significant radiation damage from trapped
soft protons scattering off the x-ray telescope's mirrors. The primary effect
of this damage was to increase the charge-transfer inefficiency (CTI) of the
ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented
procedures to remove the ACIS from the telescope's focus during high-radiation
events: planned protection during radiation-belt transits; autonomous
protection triggered by an on-board radiation monitor; and manual intervention
based upon assessment of space-weather conditions. However, as Chandra's
multilayer insulation ages, elevated temperatures have reduced the
effectiveness of the on-board radiation monitor for autonomous protection. Here
we investigate using the ACIS CCDs themselves as a radiation monitor. We
explore the 10-year database to evaluate the CCDs' response to particle
radiation and to compare this response with other radiation data and
environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773
A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake
We present a new analysis of very deep Chandra observations of the galaxy
cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to
resolve the thermodynamic structure of the Intracluster Medium (ICM) on length
scales of ~ 1 kpc near the cool core. We find several previously unresolved
structures, including a high pressure feature to the north of the BCG that
appears to arise from the bulk motion of Abell 1795's cool core. To the south
of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending
for distances of ~ 50 kpc spatially coincident with previously identified
filaments of H-alpha emission. Gas at similar temperatures is also detected in
adjacent regions without any H-alpha emission. The X-ray gas coincident with
the H-alpha filament has been measured to be cooling spectroscopically at a
rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star
formation rate in this region as inferred from UV observations, suggesting that
the star formation in this filament as inferred by its H and UV
emission can trace its origin to the rapid cooling of dense, X-ray emitting
gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM
at similar temperatures and even higher metallicities not cospatial with
H emission is observed just to the west of the H-alpha filament,
suggesting that it may have been uplifted by Abell 1795's central active
galaxy. Further simulations of cool core sloshing and AGN feedback operating in
concert with one another will be necessary to understand how such a dynamic
cool core region may have originated and why the H-alpha emission is so
localized with respect to the cool X-ray gas despite the evidence for a
catastrophic cooling flow.Comment: 14 Pages, 10 Figures, Resubmitted to ApJ after first referee report,
Higher Resolution Figures available upon reques
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II
The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray
Observatory. CCDs are vulnerable to radiation damage, particularly by soft
protons in the radiation belts and solar storms. The Chandra team has
implemented procedures to protect ACIS during high-radiation events including
autonomous protection triggered by an on-board radiation monitor. Elevated
temperatures have reduced the effectiveness of the on-board monitor. The ACIS
team has developed an algorithm which uses data from the CCDs themselves to
detect periods of high radiation and a flight software patch to apply this
algorithm is currently active on-board the instrument. In this paper, we
explore the ACIS response to particle radiation through comparisons to a number
of external measures of the radiation environment. We hope to better understand
the efficiency of the algorithm as a function of the flux and spectrum of the
particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space
Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
Chandra X-ray Observations of Galaxies in an Off-Center Region of the Coma Cluster
We have performed a pilot Chandra survey of an off-center region of the Coma
cluster to explore the X-ray properties and Luminosity Function of normal
galaxies. We present results on 13 Chandra-detected galaxies with optical
photometric matches, including four spectroscopically-confirmed Coma-member
galaxies. All seven spectroscopically confirmed giant Coma galaxies in this
field have detections or limits consistent with low X-ray to optical flux
ratios (fX/fR < 10^-3). We do not have sufficient numbers of X-ray detected
galaxies to directly measure the galaxy X-ray Luminosity Function (XLF).
However, since we have a well-measured optical LF, we take this low X-ray to
optical flux ratio for the 7 spectroscopically confirmed galaxies to translate
the optical LF to an XLF. We find good agreement with Finoguenov et al. (2004),
indicating that the X-ray emission per unit optical flux per galaxy is
suppressed in clusters of galaxies, but extends this work to a specific
off-center environment in the Coma cluster. Finally, we report the discovery of
a region of diffuse X-ray flux which might correspond to a small group
interacting with the Coma Intra-Cluster Medium (ICM).Comment: Accepted for publication in the Astrophysical Journa
- …