62 research outputs found

    X-ray spectroscopic study of chemical state in uranium carbides

    Get PDF
    UC and UMeC₂ (Me = Fe, Zr, Mo) carbides were studied by the high-energy-resolution fluorescence-detected X-ray absorption (HERFD-XAS) technique at the U M₄ and L₃ edges. Both U M₄ and L₃ HERFD-XAS reveal some differences between UMeC₂ and UC; there are differences also between the M₄ and L₃ edge results for both types of carbide in terms of the spectral width and energy position. The observed differences are attributed to the consequences of the U 5f, 6d–4d(3d) hybridization in UMeC₂. Calculations of the U M₄ HERFD-XAS spectra were also performed using the Anderson impurity model (AIM). Based on the analysis of the data, the 5f occupancy in the ground state of UC was estimated to be 3.05 electrons. This finding is also supported by the analysis of U N₄,₅ XAS of UC and by the results of the AIM calculations of the U 4f X-ray photoelectron spectrum of UC

    Effect of carbon content on electronic structure of uranium carbides

    Get PDF
    The electronic structure of UCx_x (x = 0.9, 1.0, 1.1, 2.0) was studied by means of x-ray absorption spectroscopy (XAS) at the C K edge and measurements in the high energy resolution fluorescence detection (HERFD) mode at the U M4_4 and L3_3 edges. The full-relativistic density functional theory calculations taking into account the Coulomb interaction U and spin-orbit coupling (DFT+U+SOC) were also performed for UC and UC2_2. While the U M4_4HERFD-XAS spectra of the studied samples reveal little difference, the U HERFD-XAS spectra show certain sensitivity to the varying carbon content in uranium carbides. The observed gradual changes in the U M4_4 HERFD spectra suggest an increase in the C 2p-U 5f charge transfer, which is supported by the orbital population analysis in the DFT+U+SOC calculations, indicating an increase in the U 5f occupancy in UC as compared to that in UC. On the other hand, the density of states at the Fermi level were found to be significantly lower in UC2_2, thus affecting the thermodynamic properties. Both the x-ray spectroscopic data (in particular, the C K XAS measurements) and results of the DFT+U+SOC calculations indicate the importance of taking into account U and SOC for the description of the electronic structure of actinide carbides

    Non-contact optical tweezers-based single cell analysis through in vivo X-ray elemental imaging

    Get PDF
    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in situ elemental imaging of free-standing living biological microorganisms or single cells in their aqueous environment. Using the model organism Scrippsiella trochoidea, several successful test experiments focussing on applications in environmental toxicology have been performed at ESRF-ID13, demonstrating the feasibility, repeatability and high throughput potential of the OT XRF methodology. We expect that the OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability

    In vivo X-ray elemental imaging of single cell model organisms manipulated by laser-based optical tweezers

    Get PDF
    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in vivo elemental imaging in a two-dimensional (2D) projection mode in free-standing biological microorganisms or single cells, present in their aqueous environment. Using the model organism Scrippsiella trochoidea, a first proof of principle experiment at beamline ID13 of the European Synchrotron Radiation Facility (ESRF) demonstrates the feasibility of the OT XRF methodology, which is applied to study mixture toxicity of Cu-Ni and Cu-Zn as a result of elevated exposure. We expect that the new OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability

    A multi-technique study of altered granitic rock from the Krunkelbach Valley uranium deposit, Southern Germany

    Get PDF
    Herein, a multi-technique study was performed to reveal the elemental speciation and microphase composition in altered granitic rock collected from the Krunkelbach Valley uranium (U) deposit area near an abandoned U mine, Black Forest, Southern Germany.Comment: RSC Advances (2020

    Insight into the structure-property relationship of UO2_{2} nanoparticles

    Get PDF
    Highly crystalline UO2_{2} nanoparticles (NPs) with sizes of 2–3 nm were produced by fast chemical deposition of uranium(IV) under reducing conditions at pH 8–11. The particles were then characterized by microscopy and spectroscopy techniques including high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), high-energy resolution fluorescence detection (HERFD) X-ray absorption spectroscopy at the U M4_{4} edge and extended X-ray absorption fine structure (EXAFS) spectroscopy at the U L3_{3} edge. The results of this investigation show that despite U(IV) being the dominant oxidation state of the freshly prepared UO2_{2} NPs, they oxidize to U4_{4}O9_{9} with time and under the X-ray beam, indicating the high reactivity of U(IV) under these conditions. Moreover, it was found that the oxidation process of NPs is accompanied by their growth in size to 6 nm. We highlight here the major differences and similarities of the UO2_{2} NP properties to PuO2_{2}, ThO2_{2} and CeO2_{2} NPs
    • …
    corecore