5 research outputs found

    Biochemical modification of plasma ice nucleating activity in a freeze-tolerant frog

    No full text
    Recently, we reported the presence of ice nucleating activity, apparently proteinaceous, in the plasma of a freeze-tolerant frog, Rana sylvatica, collected in autumn and spring. Although this protein has not been purified, its ice nucleating behavior can act as an internal reference for tests that attempt to modify its ability to nucleate ice formation. If the addition of a chemical reagent alters the temperature of ice crystallization compared with the control, it can be assumed that protein modification may have occurred. The ice nucleating protein in R. sylvatica showed resistance to proteolysis with four different proteases although there was a significant reduction in the temperatures of nucleation with these treatments (ANOVA P < 0.001). However, ice nucleating activity was lost when plasma was treated with the addition of urea or N-bromosuccinimide. Modification of protein sulphydryl groups with iodoacetamide did not affect the crystallization temperature (Tc) but treatment with iodoacetic acid resulted in a significant increase in Tc of plasma. An abrupt loss of ice nucleating ability was observed in plasma samples after heating above 87 °C. Anomalous potentiation of ice nucleating activity occurred when the plasma was heated to and held at temperatures between 67-75 °C

    Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica

    No full text
    Although the presence of antifreeze and ice nucleating agents in the hemolymph of insects has been well documented, there have been no reports of either of these types of agent in vertebrates. The technique of differential scanning calorimetry was used to examine the blood, serum, and plasma of a freeze-tolerant frog, Rana sylvatica, for the presence of antifreeze protein activity. Results demonstrate the absence of antifreeze protein but the presence of an ice nucleating agent that may serve as a functional component of the overwintering strategy of this species. Ice nucleating activity was detected in samples of cell-free blood, serum, and plasma, suggesting that the agent is a soluble component and possibly plasma protein. To our knowledge, the identification of ice nucleating activity in this freeze-tolerant vertebrate is novel

    Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis

    No full text
    1. The levels of glycogen, lipid, protein, polyols (glycerol and sorbitol), sugars, amino acids, adenylates, and other intermediary metabolites were measured in the overwintering, third instar larvae of the gall fly, Eurosta solidaginis, sampled at specified temperatures during a controlled (1°C per day decrease) low temperature acclimation of the larvae from 15° to - 30°C. 2. Glycogen reserves were depleted as temperature was decreased, the decrease in glycogen fully accounting for the observed increases in glycerol, sorbitol, glucose, and trehalose in the larvae at low temperatures. Protein and total glyceride reserves of the larvae, however, were not altered during low temperature acclimation. 3. Temperature specific patterns of glycerol and sorbitol accumulation were found. Glycerol concentrations, which were 65% of maximum at 15°C, reached a plateau in concentration of 235 μmol/g wet wt. between 5 a

    Direct sGC activation bypasses no scavenging reactions of intravascular free oxy-hemoglobin and limits vasoconstriction

    No full text
    Aims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs. The new soluble guanylate cyclase (sGC) stimulator Bay 41-8543 and sGC activator Bay 60-2770 directly modulate sGC, independent of NO bioavailability, providing a potential therapeutic mechanism to bypass hemoglobin-mediated NO inactivation. Results: Infusions of human hemoglobin solutions and the HBOC Oxyglobin into rats produced a severe hypertensive response, even at low plasma heme concentrations approaching 10 μM. These reactions were only observed for ferrous oxy-hemoglobin and not analogs that do not rapidly scavenge NO. Infusions of L-NG-Nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor, after hemoglobin infusion did not produce additive vasoconstriction, suggesting that vasoconstriction is related to scavenging of vascular NO. Open-chest hemodynamic studies confirmed that hypertension occurred secondary to direct effects on increasing vascular resistance, with limited negative cardiac inotropic effects. Intravascular hemoglobin reduced the vasodilatory potency of sodium nitroprusside (SNP) and sildenafil, but had no effect on vasodilatation by direct NO-independent activation of sGC by BAY 41-8543 and BAY 60-2770. Innovation and Conclusion: These data suggest that both sGC stimulators and sGC activators could be used to restore cyclic guanosine monophosphate-dependent vasodilation in conditions where cell-free plasma hemoglobin is sufficient to inhibit endogenous NO signaling. Antioxid. Redox Signal. 19, 2232-2243

    The promise of organ and tissue preservation to transform medicine

    No full text
    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science
    corecore