1,678 research outputs found
Current-Voltage Curves for Molecular Junctions Computed Using All-Electron Basis Sets
We present current-voltage (I-V) curves computed using all-electron basis
sets on the conducting molecule. The all-electron results are very similar to
previous results obtained using effective core potentials (ECP). A hybrid
integration scheme is used that keeps the all-electron calculations cost
competitive with respect to the ECP calculations. By neglecting the coupling of
states to the contacts below a fixed energy cutoff, the density matrix for the
core electrons can be evaluated analytically. The full density matrix is formed
by adding this core contribution to the valence part that is evaluated
numerically. Expanding the definition of the core in the all-electron
calculations significantly reduces the computational effort and, up to biases
of about 2 V, the results are very similar to those obtained using more
rigorous approaches. The convergence of the I-V curves and transmission
coefficients with respect to basis set is discussed. The addition of diffuse
functions is critical in approaching basis set completeness
The Infrared Spectra of Very Large Irregular Polycyclic Aromatic Hydrocarbons (PAHs): Observational Probes of Astronomical PAH Geometry, Size and Charge
The mid-IR spectra of six large, irregular PAHs with formulae (C84H24 -
C120H36) have been computed using Density Functional Theory (DFT). Trends in
the dominant band positions and intensities are compared to those of large,
compact PAHs as a function of geometry, size and charge. Irregular edge
moieties that are common in terrestrial PAHs, such as bay regions and rings
with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for
all PAHs comprised solely of C and H reported to date, mid-IR emission from
irregular PAHs fails to produce a strong CCstr band at 6.2 um, the position
characteristic of the important, class A astronomical PAH spectra. Earlier
studies showed inclusion of nitrogen within a PAH shifts this to 6.2 um for PAH
cations. Here we show this band shifts to 6.3 um in nitrogenated PAH anions,
close to the position of the CC stretch in class B astronomical PAH spectra.
Thus nitrogenated PAHs may be important in all sources and the peak position of
the CC stretch near 6.2 um appears to directly reflect the PAH cation to anion
ratio. Large irregular PAHs exhibit features at 7.8 um but lack them near 8.6
um. Hence, the 7.7 um astronomical feature is produced by a mixture of small
and large PAHs while the 8.6 um band can only be produced by large compact
PAHs. As with the CCstr, the position and profile of these bands reflect the
PAH cation to anion ratio.Comment: accepted by Ap
Algorithms versus architectures for computational chemistry
The algorithms employed are computationally intensive and, as a result, increased performance (both algorithmic and architectural) is required to improve accuracy and to treat larger molecular systems. Several benchmark quantum chemistry codes are examined on a variety of architectures. While these codes are only a small portion of a typical quantum chemistry library, they illustrate many of the computationally intensive kernels and data manipulation requirements of some applications. Furthermore, understanding the performance of the existing algorithm on present and proposed supercomputers serves as a guide for future programs and algorithm development. The algorithms investigated are: (1) a sparse symmetric matrix vector product; (2) a four index integral transformation; and (3) the calculation of diatomic two electron Slater integrals. The vectorization strategies are examined for these algorithms for both the Cyber 205 and Cray XMP. In addition, multiprocessor implementations of the algorithms are looked at on the Cray XMP and on the MIT static data flow machine proposed by DENNIS
Benchmark full configuration-interaction calculations on H2O, F- and F
Full configuration-interaction calculations are reported, and compared to other methods, for H2O at its equilibrium geometry and at two geometries with the H-O bonds stretched. Since the percentage of the self-consistent field (SCF) reference in the full configuration-interaction (FCI) wave function decreases greatly with the bond elongation, the accuracy of techniques based on a single reference do not compare well with the FCI results. However, the results from a complete active space SCF/multireference configuration-interaction (CASSCF/MRCI) treatment are in good agreement with the FCI. Correlation effects in F compared to Ne are far more similar than for F- compared to Ne, despite F- and Ne being isoelectronic. Since the importance of higher than double excitations is more important for F- than F, a very high percentage of the correlation must be obtained to accurately compute the electron affinity. In a CASSCF/MRCI treatment the higher than quadruple excitations contribute 0.02 eV to the electron affinity (EA), even for modest basis sets
Symmetry and equivalence restrictions in electronic structure calculations
A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction
Spectroscopic Constants, Abundances, and Opacities of the TiH Molecule
Using previous measurements and quantum chemical calculations to derive the
molecular properties of the TiH molecule, we obtain new values for its
ro-vibrational constants, thermochemical data, spectral line lists, line
strengths, and absorption opacities. Furthermore, we calculate the abundance of
TiH in M and L dwarf atmospheres and conclude that it is much higher than
previously thought. We find that the TiH/TiO ratio increases strongly with
decreasing metallicity, and at high temperatures can exceed unity. We suggest
that, particularly for subdwarf L and M dwarfs, spectral features of TiH near
0.52 \mic, 0.94 \mic, and in the band may be more easily measureable
than heretofore thought. The recent possible identification in the L subdwarf
2MASS J0532 of the 0.94 \mic feature of TiH is in keeping with this
expectation. We speculate that looking for TiH in other dwarfs and subdwarfs
will shed light on the distinctive titanium chemistry of the atmospheres of
substellar-mass objects and the dimmest stars.Comment: 37 pages, including 4 figures and 13 tables, accepted to the
Astrophysical Journa
The infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)
The mid-infrared spectra of large PAHs ranging from C54H18 to C130H28 are
determined computationally using Density Functional Theory. Trends in the band
positions and intensities as a function of PAH size, charge and geometry are
discussed. Regarding the 3.3, 6.3 and 11.2 micron bands similar conclusions
hold as with small PAHs.
This does not hold for the other features. The larger PAH cations and anions
produce bands at 7.8 micron and, as PAH sizes increases, a band near 8.5 micron
becomes prominent and shifts slightly to the red. In addition, the average
anion peak falls slightly to the red of the average cation peak. The similarity
in behavior of the 7.8 and 8.6 micron bands with the astronomical observations
suggests that they arise from large, cationic and anionic PAHs, with the
specific peak position and profile reflecting the PAH cation to anion
concentration ratio and relative intensities of PAH size. Hence, the broad
astronomical 7.7 micron band is produced by a mixture of small and large PAH
cations and anions, with small and large PAHs contributing more to the 7.6 and
7.8 micron component respectively.
For the CH out-of-plane vibrations, the duo hydrogens couple with the solo
vibrations and produce bands that fall at wavelengths slightly different than
their counterparts in smaller PAHs. As a consequence, previously deduced PAH
structures are altered in favor of more compact and symmetric forms. In
addition, the overlap between the duo and trio bands may reproduce the
blue-shaded 12.8 micron profile.Comment: ApJ, 36 pages, 9 fig
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
The 2S(+) - 2P separation in KO
The 2S(+) - 2P separation in KO is investigated using large basis sets and high levels of correlation treatment. Relativistic effects are included at the Dirac-Fock level and reduce the separation only slightly. The basis set superposition error is considered in detail. On the basis of these calculations, our best estimate places the 2p sub 3/2 state about 200 cm(exp -1) above the ground 2 sigma(+) state in agreement with our previous estimate
Theoretical dissociation energies for ionic molecules
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides
- …