19 research outputs found

    Destination-aware Adaptive Traffic Flow Rule Aggregation in Software-Defined Networks

    Full text link
    In this paper, we propose a destination-aware adaptive traffic flow rule aggregation (DATA) mechanism for facilitating traffic flow monitoring in SDN-based networks. This method adapts the number of flow table entries in SDN switches according to the level of detail of traffic flow information that other mechanisms (e.g. for traffic engineering, traffic monitoring, intrusion detection) require. It also prevents performance degradation of the SDN switches by keeping the number of flow table entries well below a critical level. This level is not preset as a hard threshold but learned during operation by using a machine-learning based algorithm. The DATA method is implemented within a RESTful application (DATA App) which monitors and analyzes the ongoing network traffic and provides instructions to the SDN controller to adapt the traffic flow matching strategies accordingly. A thorough performance evaluation of DATA is conducted in an SDN emulation environment. The results show that---compared to the default behavior of common SDN controllers---the proposed DATA approach yields significant SDN switch performance improvements while still providing detailed traffic flow information on demand.Comment: This paper was presented at NetSys conference 2019. arXiv admin note: text overlap with arXiv:1909.0154

    New concepts for traffic, resource and mobility management in software-defined mobile networks

    Get PDF
    The evolution of mobile telecommunication networks is accompanied by new demands for the performance, portability, elasticity, and energy efficiency of network functions. Network Function Virtualization (NFV), Software Defined Networking (SDN), and cloud service technologies are claimed to be able to provide most of the capabilities. However, great leap forward will only be achieved if resource, traffic, and mobility management methods of mobile network services can efficiently utilize these technologies. This paper conceptualizes the future requirements of mobile networks and proposes new concepts and solutions in the form of Software-Defined Mobile Networks (SDMN) leveraging SDN, NFV and cloud technologies. We evaluate the proposed solutions through testbed implementations and simulations. The results reveal that our proposed SDMN enhancements supports heterogeneity in wireless networks with performance improvements through programmable interfaces and centralized control

    Advances in Communication Networking: 19th EUNICE/IFIP WG 6.6 International Workshop, Chemnitz, Germany, August 28-30, 2013

    No full text
    International audienceBook Front Matter of LNCS 811

    Advances in Communication Networking

    No full text
    corecore