1,341 research outputs found

    Designing a Regional System of Social Indicators to Evaluate Nonpoint Source Water Projects

    Get PDF
    A collaborative team has developed a system to measure the social outcomes of nonpoint source water projects as indicators of progress towards environmental goals. The system involves a set of core indicators, additional supplemental indicators, and a process for collecting and using the indicators. This process is supported by methodologies and instruments for data collection, analysis, and reporting that are coordinated and supported through detailed written guidance and an on-line data management tool. Its multi-state scope and application offer a unique opportunity to target, measure, and report interim resource management accomplishments consistently at multiple levels

    High Voltage Design and Evaluation of Wien Filters for the CEBAF 200 keV Injector Upgrade

    Get PDF
    High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. Our contribution describes design, fabrication and testing of the high voltage system to upgrade the Wien spin rotator to be compatible with the 200 keV beam. This required Solidworks modeling, CST and Opera electro- and magnetostatic simulations, upgrading HV vacuum feedthroughs, and assembly techniques for improving electrode alignment. The electric and magnetic fields required by the Wien condition and the successful HV characterization under vacuum conditions are also presented

    Quantum Gates and Memory using Microwave Dressed States

    Full text link
    Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized quantum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.Comment: 9 pages, 4 figure

    Decaying Hidden Dark Matter in Warped Compactification

    Full text link
    The recent PAMELA and ATIC/Fermi/HESS experiments have observed an excess of electrons and positrons, but not anti-protons, in the high energy cosmic rays. To explain this result, we construct a decaying hidden dark matter model in string theory compactification that incorporates the following two ingredients, the hidden dark matter scenario in warped compactification and the phenomenological proposal of hidden light particles that decay to the Standard Model. In this model, on higher dimensional warped branes, various warped Kaluza-Klein particles and the zero-mode of gauge field play roles of the hidden dark matter or mediators to the Standard Model.Comment: 15 pages; v4, several clarifications added, update on Fermi/HESS result

    The kinetic dark-mixing in the light of CoGENT and XENON100

    Full text link
    Several string or GUT constructions motivate the existence of a dark U(1)_D gauge boson which interacts with the Standard Model only through its kinetic mixing. We compute the dark matter abundance in such scenario and the constraints in the light of the recent data from CoGENT, CDMSII and XENON100. We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40 GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last experimental data and seems to give promising signals in a near future. We also compute the value of the kinetic mixing needed to explain the DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is sufficient to fit with the data.Comment: 6 pages, 5figure

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Abelian Hidden Sectors at a GeV

    Get PDF
    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio
    corecore