1,341 research outputs found
Atomic layer deposition of nanolaminate structures of alternating PbTe and PbSe thermoelectric films
Designing a Regional System of Social Indicators to Evaluate Nonpoint Source Water Projects
A collaborative team has developed a system to measure the social outcomes of nonpoint source
water projects as indicators of progress towards environmental goals. The system involves a set of core
indicators, additional supplemental indicators, and a process for collecting and using the indicators. This
process is supported by methodologies and instruments for data collection, analysis, and reporting that are
coordinated and supported through detailed written guidance and an on-line data management tool. Its
multi-state scope and application offer a unique opportunity to target, measure, and report interim resource
management accomplishments consistently at multiple levels
High Voltage Design and Evaluation of Wien Filters for the CEBAF 200 keV Injector Upgrade
High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. Our contribution describes design, fabrication and testing of the high voltage system to upgrade the Wien spin rotator to be compatible with the 200 keV beam. This required Solidworks modeling, CST and Opera electro- and magnetostatic simulations, upgrading HV vacuum feedthroughs, and assembly techniques for improving electrode alignment. The electric and magnetic fields required by the Wien condition and the successful HV characterization under vacuum conditions are also presented
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
Decaying Hidden Dark Matter in Warped Compactification
The recent PAMELA and ATIC/Fermi/HESS experiments have observed an excess of
electrons and positrons, but not anti-protons, in the high energy cosmic rays.
To explain this result, we construct a decaying hidden dark matter model in
string theory compactification that incorporates the following two ingredients,
the hidden dark matter scenario in warped compactification and the
phenomenological proposal of hidden light particles that decay to the Standard
Model. In this model, on higher dimensional warped branes, various warped
Kaluza-Klein particles and the zero-mode of gauge field play roles of the
hidden dark matter or mediators to the Standard Model.Comment: 15 pages; v4, several clarifications added, update on Fermi/HESS
result
The kinetic dark-mixing in the light of CoGENT and XENON100
Several string or GUT constructions motivate the existence of a dark U(1)_D
gauge boson which interacts with the Standard Model only through its kinetic
mixing. We compute the dark matter abundance in such scenario and the
constraints in the light of the recent data from CoGENT, CDMSII and XENON100.
We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40
GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last
experimental data and seems to give promising signals in a near future. We also
compute the value of the kinetic mixing needed to explain the
DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is
sufficient to fit with the data.Comment: 6 pages, 5figure
Recommended from our members
Automated detection of Karnal bunt teliospores
Karnal bunt is a fungal disease which infects wheat and, when present in wheat crops, yields it unsatisfactory for human consumption. Due to the fact that Karnal bunt (KB) is difficult to detect in the field, samples are taken to laboratories where technicians use microscopes and methodically search for KB teliospores. AlliedSignal Federal Manufacturing and Technologies (FM and T), working with the Kansas Department of Agriculture, created a system which utilizes pattern recognition, feature extraction, and neural networks to prototype an automated detection system for identifying KB teliospores. System hardware consists of a biological compound microscope, motorized stage, CCD camera, frame grabber, and a PC. Integration of the system hardware with custom software comprises the machine vision system. Fundamental processing steps involve capturing an image from the slide, while concurrently processing the previous image. Features extracted from the acquired imagery are then processed by a neural network classifier which has been trained to recognize spore-like objects. Images with spore-like objects are reviewed by trained technicians. Benefits of this system include: (1) reduction of the overall cycle-time; (2) utilization of technicians for intelligent decision making (vs. manual searching); (3) a regulatory standard which is quantifiable and repeatable; (4) guaranteed 100% coverage of the cover slip; and (5) significantly enhanced detection accuracy
The state of peer-to-peer network simulators
Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results
Abelian Hidden Sectors at a GeV
We discuss mechanisms for naturally generating GeV-scale hidden sectors in
the context of weak-scale supersymmetry. Such low mass scales can arise when
hidden sectors are more weakly coupled to supersymmetry breaking than the
visible sector, as happens when supersymmetry breaking is communicated to the
visible sector by gauge interactions under which the hidden sector is
uncharged, or if the hidden sector is sequestered from gravity-mediated
supersymmetry breaking. We study these mechanisms in detail in the context of
gauge and gaugino mediation, and present specific models of Abelian GeV-scale
hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge
force with hypercharge, singlets or bi-fundamentals which couple to both
sectors, and additional loop effects. Finally, we investigate the possible
relevance of such sectors for dark matter phenomenology, as well as for low-
and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio
- …