116 research outputs found

    Factors influencing the life table statistics of the cassava mealybug Phenacoccus manihoti

    Get PDF
    Detailed age-specific life table studies were carried out under controlled conditions to measure the effect of temperature, leaf quality ( = age), variety and plant drought stress on net production rate (R0), intrinsic rate of increase (rm) and generation time (G) of Phenacoccus manihoti Mat.-Ferr. in order to explain changes in population densities observed in the field. The developmental threshold calculated from our data and results published by various authors was 14.7°C. At 35°C all mealybugs died before reaching the adult stage. Mealybugs reared on leaves of different ages showed little differences in rm, and the higher occurrence of P. manihoti on plant tips and oldest leaves could not be explained with better nutritive value of these plant parts alone. Cassava varieties have a strong influence on the intrinsic rate of increase, which could explain differences in results published by other authors. Plant drought stress had little influence on the life table statistics, but rainfall is assumed to be a determinant factor in the dynamics of the mealybu

    Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae)

    Get PDF
    The impact of Phenacoccus manihoti Matile-Ferrero on growth and tuber yield of cassava, and the results of its biological control by the exotic parasitoid Epidinocarsis lopezi (De Santis) were investigated in a survey of 60 farmers' fields in Ghana and Ivory Coast over an area of 180 000 km2 of the savana and forest ecosystems. Twenty-nine variables associated with plant growth, agronomic and environmental factors, and insect populations were recorded. Densities of P. manihoti were closely correlated with stunting of the cassava shoot tips and, less so, with the rate of stunting early in the growing season. With increasing mealybug infestations, average harvest indices declined and populations of E. lopezi and of indigenous coccinellids increased, but parasitoids were found at lower host levels than were predators. The length of time E. lopezi had been present in an area was the most important factor influencing mealybug densities. Thus, P. manihoti populations were significantly lower where E. lopezi had been present for more than half the planting season than in areas where E. lopezi was lacking or had been only recently introduced. A significant proportion of the farmers in the savanna zone, where P. manihoti populations were much higher than in the forest zone, had observed this decline due to E. lopezi. Tuber yield losses due to P. manihoti in the absence of E. lopezi were tentatively estimated at 463 g/plant in the savanna zone. No significant effect was found in the forest region. When E. lopezi was present, average P. manihoti damage scores were reduced significantly, both in the savanna and forest regions. The increase in yields was 228g/plant or about 2.48 t/ha in the savanna regio

    Short Time Behavior in De Gennes' Reptation Model

    Get PDF
    To establish a standard for the distinction of reptation from other modes of polymer diffusion, we analytically and numerically study the displacement of the central bead of a chain diffusing through an ordered obstacle array for times t<O(N2)t < O(N^2). Our theory and simulations agree quantitatively and show that the second moment approaches the t1/4t^{1/4} often viewed as signature of reptation only after a very long transient and only for long chains (N > 100). Our analytically solvable model furthermore predicts a very short transient for the fourth moment. This is verified by computer experiment.Comment: 4 pages, revtex, 4 ps file

    An overview of a systems model of cassava and cassava pests in Africa

    Get PDF
    A systems model is described for cassava, Manihot esculenta Crantz, two of its introduced herbivores, the cassava green mite (CGM), Mononychellus tanajoa (Bondar), sensu lato, and the cassava mealybug (CM), Phenacoccus manihoti Mat.-Ferr., the introduced CM parasitoid, Epidinocarsis lopezi (DeSantis) and coccinellid predator of the genus Hyperaspis. The systems model includes the effects of weather, soil nitrogen and water levels on the interactions of the system's components. The model simulates the distribution of developmental times of cohorts initated at the same time, as well as the number and biomass (energy) dynamics of all populations over time. Biomass acquisition and allocation at the population and organism subunit levels (e.g. leaves, fruit, ova) were also simulated. A common acquisition (i.e. functional response) submodel was used to estimate daily photosynthetic as well as nitrogen and water uptake rates in cassava, in addition to herbivory, parasitism and predation rates for the arthropod species. This paper presents an overview of the systems model. Simulation results for the plant under pest free conditions were compared to field data. In addition, the model was used to estimate tuber yield losses due to CM and CGM feeding, and to examine the beneficial effects of introduced CM natural enemies as measured by reductions in tuber yield losse

    Assessment of industrial nitriding processes for fusion steel applications

    Get PDF
    The 9Cr steels EUROFER and F82H-mod are the candidate materials for future fusion reactors. The extension of the operation limits including temperature, strength and toughness are still the scope of ongoing research. In a pulsed reactor operation, fatigue lifetime is one of the major properties for the steels. While the oxide dispersion strengthened EUROFER-ODS variant showed significant improvements in this area, the production costs and availability of large quantities of materials drastically limits its applications. In the present study, different surface nitriding treatments of EUROFER972 have been performed and the impact on microstructure, dynamic fracture toughness and high temperature fatigue has been analysed. Four different states of EUROFER including different heat treatments, nitriding of the surface and the ODS variant are tested and compared in this work. Low cycle fatigue tests show the improvements after certain treatments. Charpy impact tests and microstructural investigation by scanning electron microscopy and analytical transmission electron microscopy are also performed to compare the materials against the reference (EUROFER97). While conventional gas nitriding showed no beneficial effect on the material, the Hard-Inox-P treatment showed a significant improvement in the cycles to failure while retaining an acceptable toughness. Microstructural investigations showed the presence of very small chromium- and nitrogen-rich precipitates in the area close to the surface

    Towards a Learning System for University Campuses as Living Labs for Sustainability

    Get PDF
    Universities, due to their sizeable estates and populations of staff and students, as well as their connections with, and impact within, their local and wider communities, have significant environmental, social and economic impacts. There is a strong movement for universities to become leaders in driving society towards a more sustainable future, through improving the sustainability of the built environment and the universities’ practices and operations, and through their educational, research and wider community engagement missions. Around the globe the concept of ‘Living Labs’ has emerged as an instrument to integrate these different aspects to deliver sustainability improvements, through engaging multiple stakeholders in all of these areas, and through the co-creation of projects to improve the sustainability of the campus environment and operations, and to link these to the education, research, and wider community missions of the institution. This chapter describes a living, shared framework and methodology, the ‘Campus as Living Lab’ learning system, created through global participatory workshops and Living Lab literature, aimed at supporting universities and their Sustainability (Coordinating) Offices in the development and monitoring of Living Lab projects. The framework includes seven categories of supportive data collection and three levels of details to meet different requirements of potential users. The Living Lab framework presented in this chapter, aims to create value and help universities maximise the benefit of Living Lab projects within an institution, support monitoring, reflection and learning from projects, and facilitate communication with stakeholders, and the sharing of practices and learning between peers across the globe. As a living shared, framework and learning system, the framework will adapt and develop over time and within different contexts. To provide feedback and fast (practical) learning from users, the system will be further developed to facilitate transparent peer reviewing
    corecore