13 research outputs found

    The “Warm Zone” Cases: Environmental Monitoring Immediately Outside the Fire Incident Response Arena by Firefighters

    No full text
    Hazardous work zones (i.e., hot, warm, and cold) are typically established by emergency response teams during hazardous materials (HAZMAT) calls but less consistently for fire responses to segment personnel and response activities in the immediate geographic area around the fire. Despite national guidelines, studies have documented the inconsistent use of respiratory protective equipment by firefighters at the fire scene. In this case-series report, we describe warm zone gas levels using multigas detectors across five independent fire incident responses all occurring in a large South Florida fire department. Multigas detector data collected at each fire response indicate the presence of sustained levels of volatile organic compounds in the “warm zone” of each fire event. These cases suggest that firefighters should not only implement strategies for multigas detector use within the warm zone but also include respiratory protection to provide adequate safety from toxic exposures in the warm zone. Keywords: Firefighters, Multigas detectors, Respiratory protection, Warm zon

    964 Passive monitoring of chemical exposures in south florida firefighters using silicone wristbands

    No full text
    Introduction Firefighters are likely to be exposed to many toxic chemicals in the performance of their work duties such as polycyclic aromatic hydrocarbons (PAHs). Chemical exposures may occur through dermal, oral, or inhalation pathways. Passive sampling devices are used to sequester organic molecules through passive diffusion and provide time-weighted averages of chemical concentrations. This pilot study uses silicone-based wristbands as a personal passive sampler to detect known carcinogens during a 24 hour work shift. Methods Twenty-four wristbands were deployed across various fire services throughout South Florida. Prior to deployment, bands were cleaned using a standardised cleaning protocol to remove contamination and optimise the surface for absorption. Wristbands were then packaged in air-tight bags to prevent contamination. Wristbands were worn on fire service personnel and collected at the end of a 24 hour work shift. Chemical contaminants were then extracted from the wristband and analysed for PAHs—identified using the EPA IRIS, California Proposition 65, and IRAC datasets—using gas chromatography-mass spectrometry. Results The average number of chemicals found across all wristbands (n=24) was 23 with 4 categorised as carcinogenic to humans (i.e., Benzo[b]fluoranthene, Benzo[j]fluoranthene, Chrysene, and Naphthalene). All bands had at least one PAH present, specifically, 87.5% contained Benzo[b]fluoranthene (mean=5.23 ng/band), 50% contained Benzo[j]fluoranthene (mean=2.05 ng/band), 79.2% contained Chrysene (mean=9.55 ng/band), and 100% contained Napthalene (mean=176.53 ng/band). Actual types of exposure compounds is likely to be larger than the observed data as the group of PAHs detected was limited to three existing datasets. Discussion Silicone-based wristbands are feasible to use within the fire service to detect and characterise ambient hazardous chemical compounds. These personal self-samplers used during a 24 hour collection period identified various PAHs in the firefighter work environment. Objective measures of harmful chemical exposures in the fire service should be monitored with a comprehensive surveillance system that includes personal sampler devices

    967 Evaluating temperature changes and volatile organic compound off-gassing in turnout protective gear ensembles among florida firefighters

    No full text
    Introduction Firefighter protective gear ensembles have been shown in controlled laboratory and staged live fire training experiments, to collect and harbour carcinogens such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Protective gear is often time transported in the personal vehicle of firefighters, resulting in cross-contamination between the vehicle and the fire incident environment. In the Southern United States particularly, ambient warmer temperatures may influence the rate of VOC gear off-gassing. This pilot study characterises temperature and particle off-gassing of firefighter turnout gear immediately following a 24 hour work shift. Methods Twelve sets of gear were obtained from South Florida career firefighters. Their protective gear, including helmet, gloves, hood, pants, boots and turnout coat, were placed in a large vacuum sealed Pelican case immediately after a 24 hour work shift. Turn-out gear was randomly selected at each fire station regardless of fire exposure. A photoionization gas detector (0.2 to 200 ppm), MetOne particle counter, Chromosorb diffusion patch, and a temperature logger were placed in each case with the ensemble for a 24 hour collection period. Results In two extreme observation points, VOC off-gassing was moderately, but significantly, correlated with temperature changes within the exposed gear (case#1: r=0.50; p Discussion Firefighter turnout gear used during real-life fire incident response events was documented to release VOCs and particles immediately after a 24 hour work shift. These results suggest the importance of the development of robust decontamination procedures immediately following a fire incident response is needed to reduce exposure to potential carcinogens from firefighter protective gear

    Characterization of fire investigators’ polyaromatic hydrocarbon exposures using silicone wristbands

    No full text
    Background: Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.1 million total firefighting personnel. This exploratory study contributes initial evidence of PAH exposures sustained by this understudied group using worn silicone passive samplers. Objectives: Evaluate PAH exposures sustained by fire investigators at post-fire scenes using worn silicone passive samplers. Assess explanatory factors and health risks of PAH exposure at post-fire scenes. Methods: As part of a cross-sectional study design, silicone wristbands were distributed to 16 North Carolina fire investigators, including eight public, seven private, and one public and private. Wristbands were worn during 46 post-fire scene investigations. Fire investigators completed pre- and post-surveys providing sociodemographic, occupational, and post-fire scene characteristics. Solvent extracts from wristbands were analyzed via gas chromatography-mass spectrometry (GC-MS). Results were used to estimate vapor-phase PAH concentration in the air at post-fire scenes. Results: Fire investigations lasted an average of 148 minutes, standard deviation ± 93 minutes. A significant positive correlation (r=0.455, p<.001) was found between investigation duration and PAH concentrations on wristbands. Significantly greater time-normalized PAH exposures (p=0.039) were observed for investigations of newer post-fire scenes compared to older post-fire scenes. Regulatory airborne PAH exposure limits were exceeded in six investigations, based on exposure to estimated vapor-phase PAH concentrations in the air at post-fire scenes. Discussion: Higher levels of off-gassing and suspended particulates at younger post-fire scenes may explain greater PAH exposure. Weaker correlations are found between wristband PAH concentration and investigation duration at older post-fire scenes, suggesting reduction of off-gassing PAHs over time. Exceedances of regulatory PAH limits indicate a need for protection against vapor-phase contaminants, especially at more recent post-fire scenes
    corecore