47 research outputs found

    Pioneer tree species accelerate restoration of tree-related microhabitats in 50-year-old reserves of Bialowieza Forest, Poland

    Get PDF
    Retention of structural elements such as deadwood and habitat trees at the level of forest stands has been promoted to integrate biodiversity conservation into multiple-use forest management. The conservation value of habitat trees is largely determined by the presence, richness, and abundance of tree-related microhabitats (TreMs). Since TreMs are often lacking in intensively managed forests, an important question of forest conservation is how the abundance and richness of TreMs may be effectively restored. Here, we investigated whether the strict protection of forest through cessation of timber harvesting influenced TreM occurrence at tree and stand levels. For that purpose, we compared four managed and four set-aside stands (0.25 ha each) in the Bialowieza Forest, with identical origin following clear-cuts approximately 100 years ago. We found that the abundance and richness of TreMs on living trees were not significantly different between stands that were either conventionally managed or where active forest management ceased 52 years ago. Yet, our analysis of TreMs on tree species with contrasting life-history traits revealed that short-lived, fast-growing species (pioneers) developed TreMs quicker than longer-lived, slower-growing species. Hence, tree species such as Populus or Betula, which supply abundant and diverse TreMs, can play an important role in accelerating habitat restoration

    Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees

    Get PDF
    The effect of planting density on branch development was examined in 4-year-old Eucalyptus pilularis Sm. and Eucalyptus cloeziana F. Muell. plantations located near the coast of north-eastern NSW. Branch diameter, angle and status (live or dead) were measured along the entire stem of trees established at 1250, 1667 and 3333 stems per hectare (sph). Measurements of tree height and stem diameter at breast height over bark (DBH) were also recorded. Results showed that with an increase in initial planting density from 1250 to 1667 sph, branch size decreased, branch mortality on the lower stem increased, branch angle became more acute and DBH decreased in trees of both E. pilularis and E. cloeziana. A further increase in initial planting density from 1667 to 3333 sph did not significantly reduce branch size or branch angle but did result in increased branch mortality and decreased DBH in both species. These results suggest that increasing initial planting density from 1250 to 1667 sph will improve early branch control. However, there is no advantage in establishing trees at 3333 sph rather than 1667 sph to reduce branch size or increase branch mortality in either species. Clearwood production on the lower stem in all stocking treatments of both species was negligible at age 4

    Silvicultural practices in Australian native State forests - An introduction

    No full text
    Silviculture is the manipulation of forest stand structure and dynamics to achieve specific forest management objectives. In this paper the proceeding contributions from four State forest services about their silvicultural practices in native forests ar

    Does the addition of litter from N-fixing Acacia mearnsii accelerate leaf decomposition of Eucalyptus globulus?

    No full text
    Nutrient cycling in mixed-species plant communities may be enhanced in comparison to what might be expected from the component species. In this study, we investigated (1) whether the admixing of nitrogen-rich litter from Acacia mearnsii can accelerate the decomposition of Eucalyptus globulus leaf litter and (2) whether eucalypt litter originating from mixed stands with acacias decomposes faster than litter from pure eucalypt stands. To address the first question, pure and mixed litter was incubated in the laboratory for 110 days at 25掳C in the following proportions: 100%E, 75%E:25%A, 50%E:50%A, 25%E:75%A and 100%A, where %E and %A refers to the proportion of eucalypt and acacia in the microcosms, respectively. Since mass loss and N loss of litter in the 50:50 mixture was higher than for pure eucalypt but not higher than for acacia, it appears that acacia litter accelerated decomposition of eucalypt litter but not vice versa. Decomposition rates increased with N concentration in the combined litters up to 1.1% N, above that point it remained constant. To address the second question, eucalypt litter from pure and mixed stands was incubated in microcosms. The loss of mass, N and P after 110 days was not different for eucalypt litter originating from mixed (75E:25A, 50E:50A, 25E:75A) and pure (100E) plantations. Together, these studies suggest that admixture of A. mearnsii to E. globulus has the potential to accelerate decomposition and N cycling, and that the species interactions are most pronounced in the 50:50 mixture. Mixing of the two species in plantations has so far had no influence on the decomposability of eucalypt litter

    Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata

    No full text
    This study compared field and laboratory decomposition rates of coarse woody debris (CWD) (> 10 cm diameter) from three tree species: Pinus radiata, Eucalyptus regnans, and Eucalyptus maculata. For this purpose, the density loss of logs on the ground sampled from chronosequences of sites following harvesting was determined using the water replacement technique. P. radiata logs were sampled 1, 2.5, 6, and 9 years following harvesting, and logs of E. regnans and E. maculata were collected from sites that were harvested 1, 3.5, 6.5, and 12 and 1.5, 6.5, and 11.5 years ago, respectively. In addition, the C/N ratio of wood was determined and current respiration rates of logs from these different age classes were measured through laboratory incubation. The times for loss of 95% of material (t0.95) determined from density loss for these species were 24 years for P. radiata, 43 years for E. regnans, and 62 years for E. maculata. The decomposition rates of CWD derived from laboratory respiration were 6.1, 5.9 and 11.9 times higher than the decay rates from density loss in P. radiata, E. regnans, and E. maculata, respectively. This points to severe constraints of decomposition through adverse conditions in the field. The changes in respiration rates and C/N ratio with age of decaying logs indicated that the single component, negative exponential decay model could be applied satisfactorily only to P. radiata. In the case of the eucalypt species, substrate quality (expressed through respiration rates) declined in the oldest samples. This may be explained by the loss of rapidly decomposing sapwood and the retention of more decay-resistant heartwood. In these cases, a two-component model will be more suitable to describe the density loss of decaying wood

    Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada

    No full text
    This study compared the ability of conifers (Abies balsamea (L.) Mill., Picea glauca (Moench) Voss) and deciduous trees (Populus tremuloides Michx., Betula papyrifera Marsh.) and shrubs and herbs to exploit soils in a southern boreal forest. Root sample

    Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii

    No full text
    A doubling of aboveground biomass production has been observed in mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman when compared with monocultures after 11 years of growth. This study examined to what extent increased nitrogen (N) availability and accelerated rates of nutrient cycling may contribute to increased growth in mixtures. Monocultures of E. globulus (E) and A. mearnsii (A) and mixtures of these species were planted in a species replacement series: 100% E, 75% E + 25% A, 50% E + 50% A, 25% E + 75% A, and 100% A. Litterfall mass increased with aboveground biomass production and was highest in 50:50 mixtures and lowest in monocultures. Owing to higher N concentrations of A. mearnsii litter, N contents of annual litterfall were at least twice as high in stands containing A. mearnsii (32-49 kg路ha -1路year-1) as in E. globulus monocultures (14 kg路ha-1路year-1). Stands with A. mearnsii also cycled higher quantities of phosphorus (P) in annual litterfall than E. globulus monocultures. This study demonstrated that mixing A. mearnsii with E. globulus increased the quantity and rates of N and P cycled through aboveground litterfall when compared with E. globulus monocultures. Thus, mixed-species plantations appear to be a useful silvicultural system to improve nutrition of eucalypts without fertilization

    On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii

    No full text
    Mixed plantations of a Eucalyptus species with a nitrogen-fixing tree species can produce significantly higher quantities of aboveground biomass than monocultures. However, if species or sites are not chosen correctly, one species may suppress the growt
    corecore