13 research outputs found

    Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019

    Get PDF
    From The Royal Society via Jisc Publications RouterHistory: received 2021-05-27, accepted 2021-08-03, pub-electronic 2021-12-06, pub-print 2022-01-24Article version: VoRPublication status: PublishedFunder: UK Research and Innovation; Id: http://dx.doi.org/10.13039/100014013; Grant(s): NE/L002469/1, NE/N015835/1, NE/N016211/1Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH4) and a sink of carbon dioxide (CO2) during summer months. However, precise quantification of this regional CH4 source and CO2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78 000 km2) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH4 fluxes normalized to wetland area ranged between 5.93 ± 1.87 mg m−2 h−1 and 4.44 ± 0.64 mg m−2 h−1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO2 sinks ranged between −513 ± 74 mg m−2 h−1 and −284 ± 89 mg m−2 h−1 and result from net uptake of CO2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N2O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH4 fluxes were found to be significantly higher than the CH4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'

    Airborne measurements of fire emission factors for African biomass burning sampled during the MOYA campaign

    Get PDF
    Airborne sampling of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and nitrous oxide (N2O) mole fractions was conducted during field campaigns targeting fires over Senegal in February and March 2017 and Uganda in January 2019. The majority of fire plumes sampled were close to or directly over burning vegetation, with the exception of two longer-range flights over the West African Atlantic seaboard (100-300 km from source), where the continental outflow of biomass burning emissions from a wider area ofWest Africa was sampled. Fire emission factors (EFs) and modified combustion efficiencies (MCEs) were estimated from the enhancements in measured mole fractions. For the Senegalese fires, mean EFs and corresponding uncertainties in units of gram per kilogram of dry fuel were 1.8 ± 0.19 for CH4, 1633 ± 171.4 for CO2, and 67 ± 7.4 for CO, with a mean MCE of 0.94 ± 0.005. For the Ugandan fires, mean EFs were 3.1 ± 0.35 for CH4, 1610 ± 169.7 for CO2, and 78 ± 8.9 for CO, with a mean modified combustion efficiency of 0.93 ± 0.004. A mean N2O EF of 0.08 ± 0.002 gkg..1 is also reported for one flight over Uganda; issues with temperature control of the instrument optical bench prevented N2O EFs from being obtained for other flights over Uganda. This study has provided new datasets of African biomass burning EFs and MCEs for two distinct study regions, in which both have been studied little by aircraft measurement previously. These results highlight the important intracontinental variability of biomass burning trace gas emissions and can be used to better constrain future biomass burning emission budgets. More generally, these results highlight the importance of regional and fuel-type variability when attempting to spatially scale biomass burning emissions. Further work to constrain EFs at more local scales and for more specific (and quantifiable) fuel types will serve to improve global estimates of biomass burning emissions of climate-relevant gases

    δ13C methane source signatures from tropical wetland and rice field emissions

    Get PDF
    The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’

    Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf

    Get PDF
    The oil and gas (O&G) sector is a significant source of methane (CH4) emissions. Quantifying these emissions remains challenging, with many studies highlighting discrepancies between measurements and inventory-based estimates. In this study, we present CH4 emission fluxes from 21 offshore O&G facilities collected in 10 O&G fields over two regions of the Norwegian continental shelf in 2019. Emissions of CH4 derived from measurements during 13 aircraft surveys were found to range from 2.6 to 1200 t yr−1 (with a mean of 211 t yr−1 across all 21 facilities). Comparing this with aggregated operator-reported facility emissions for 2019, we found excellent agreement (within 1σ uncertainty), with mean aircraft-measured fluxes only 16 % lower than those reported by operators. We also compared aircraft-derived fluxes with facility fluxes extracted from a global gridded fossil fuel CH4 emission inventory compiled for 2016. We found that the measured emissions were 42 % larger than the inventory for the area covered by this study, for the 21 facilities surveyed (in aggregate). We interpret this large discrepancy not to reflect a systematic error in the operator-reported emissions, which agree with measurements, but rather the representativity of the global inventory due to the methodology used to construct it and the fact that the inventory was compiled for 2016 (and thus not representative of emissions in 2019). This highlights the need for timely and up-to-date inventories for use in research and policy. The variable nature of CH4 emissions from individual facilities requires knowledge of facility operational status during measurements for data to be useful in prioritising targeted emission mitigation solutions. Future surveys of individual facilities would benefit from knowledge of facility operational status over time. Field-specific aggregated emissions (and uncertainty statistics), as presented here for the Norwegian Sea, can be meaningfully estimated from intensive aircraft surveys. However, field-specific estimates cannot be reliably extrapolated to other production fields without their own tailored surveys, which would need to capture a range of facility designs, oil and gas production volumes, and facility ages. For year-on-year comparison to annually updated inventories and regulatory emission reporting, analogous annual surveys would be needed for meaningful top-down validation. In summary, this study demonstrates the importance and accuracy of detailed, facility-level emission accounting and reporting by operators and the use of airborne measurement approaches to validate bottom-up accounting

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights.

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.Natural Environment Research Council (NERC): NE/S00159X/1; NE/N016238/1; NE/P019641/
    corecore