2,132 research outputs found

    2-Methyl-4,4-dioxo-N-phenyl-5,6-di­hydro-1,4-oxathiine-3-carboxamide (Oxycarboxin)

    Get PDF
    In the title compound, C12H13NO4S, a systemic fungicide, the heterocycle adopts a lounge chair conformation and the dihedral angle between the ring planes is 25.8 (2)°. Inter­molecular C—H⋯O hydrogen bonds are noted in the crystal structure. Also observed is a short inter­action of a methyl­ene hydrogen atom with the π-electron system of a phenyl ring in an adjacent mol­ecule

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Electrochemic properties of single-wall carbon nanotube electrodes

    Get PDF
    The electrochemical properties of single-wall carbon nanotube ~CNT! electrodes in the form of sheets or papers have been examined. Thermal annealing has produced significant changes in a range of properties of the material including increased hydrophobicity and elimination of electroactive surface functional groups and other impurities. As a result of these changes, the treated electrodes exhibit lower double-layer capacitance, absence of faradaic responses and associated pseudocapacitance, and a better frequency response. The basic electrochemical behavior of the CNT paper electrodes is not markedly affected by relatively large differences in electrolyte ion size, consistent with an average pore size of 9 nm. Increases in both CNT sheet thickness and surface area induce a slower electrode response in agreement with the porous nature of the electrode matrix

    Chlorido(η4-1,5-cyclo­octa­diene)[(penta­fluoro­eth­yl)diphenyl­phosphane]iridium(I)

    Get PDF
    The title structure,[IrCl(C8H12)(C14H10F5P)], reveals that (C2F5)PPh2 (penta­fluoro­ethyl­diphenyl­phosphane or pfepp) disrupts the iridium dimer [(cod)IrCl]2 (cod = cyclo­octa-1,5-diene) by rupturing the bridging chloride ligands and binding in the open coordination site to form (cod)Ir(pfepp)Cl with the IrI atom in a distorted square-planar coordination environment. The structure deviates very little from the IrI–triphenyl­phosphine analog, although a significantly (∼20σ) shorter Ir—P bond is noted for the title compound

    1,1′-Diketone and 1,1′-dinitrile Derivatives of 2,2′-biimidazole

    Get PDF
    The crystal structures of 2,2′-biimidazole-1,1′-diacetone, C12H14N4O2, and 2,2′-biimidazole-1,1′-diacetonitrile, C10H8N6, have been determined. Both molecules crystallize with coplanar rings having substituents in a trans disposition with a center of inversion located midway between the bridging C atoms

    2,4-Dinitrophenylhydrazones of 2,4-dihydroxybenzaldehyde, 2,4-dihydroxyacetophenone and 2,4-dihydroxybenzophenone

    Get PDF
    In 2,4-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone N,N-dimethylformamide solvate (or 4-[(2,4-dinitrophenyl)-hydrazonomethyl]benzene-1,3-diol N,N-dimethylformamide solvat

    Carbon nanotube electroactive polymer materials: opportunities and challenges

    Get PDF
    Carbon nanotubes (CNTs) with macroscopically ordered structures (e.g., aligned or patterned mats, fibers, and sheets) and associated large surface areas have proven promising as new CNT electroactive polymer materials (CNT-EAPs) for the development of advanced chemical and biological sensors. The functionalization of CNTs with many biological species to gain specific surface characteristics and to facilitate electron transfer to and from them for chemical- and bio-sensing applications is an area of intense research activity. Mechanical actuation generated by CNT-EAPs is another exciting electroactive function provided by these versatile materials. Controlled mechanical deformation for actuation has been demonstrated in CNT mats, fibers, sheets, and individual nanotubes. This article summarizes the current status and technological challenges for the development of electrochemical sensors and electromechanical actuators based on carbon nanotube electroactive materials
    • …
    corecore