235 research outputs found
The retarding ion mass spectrometer on dynamics Explorer-A
An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results
High-accuracy global time and frequency transfer with a space-borne hydrogen maser clock
A proposed system for high-accuracy global time and frequency transfer using a hydrogen maser clock in a space vehicle is discussed. Direct frequency transfer with a accuracy of 10 to the minus 14th power and time transfer with an estimated accuracy of 1 nsec are provided by a 3-link microwave system. A short pulse laser system is included for subnanosecond time transfer and system calibration. The results of studies including operational aspects, error sources, data flow, system configuration, and implementation requirements for an initial demonstration experiment using the Space Shuttle are discussed
Octupole strength in the neutron-rich calcium isotopes
Low-lying excited states of the neutron-rich calcium isotopes Ca
have been studied via -ray spectroscopy following inverse-kinematics
proton scattering on a liquid hydrogen target using the GRETINA -ray
tracking array. The energies and strengths of the octupole states in these
isotopes are remarkably constant, indicating that these states are dominated by
proton excitations.Comment: 15 pages, 3 figure
Correlations in intermediate-energy two-proton removal reactions
We report final-state-exclusive measurements of the light charged fragments
in coincidence with 26Ne residual nuclei following the direct two-proton
removal from a neutron-rich 28Mg secondary beam. A Dalitz-plot analysis and
comparisons with simulations show that a majority of the triple- coincidence
events with two protons display phase-space correlations consistent with the
(two-body) kinematics of a spatially-correlated pair-removal mechanism. The
fraction of such correlated events, 56(12) %, is consistent with the fraction
of the calculated cross section, 64 %, arising from spin S = 0 two-proton
configurations in the entrance-channel (shell-model) 28Mg ground state wave
function. This result promises access to an additional and more specific probe
of the spin and spatial correlations of valence nucleon pairs in exotic nuclei
produced as fast secondary beams.Comment: accepted for publication in Physical Review Letter
Spectroscopy of Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes
Excited states of the nucleus Ti have been studied, via both
inverse-kinematics proton scattering and one-neutron knockout from Ti by
a liquid hydrogen target, using the GRETINA -ray tracking array.
Inelastic proton-scattering cross sections and deformation lengths have been
determined. A low-lying octupole state has been tentatively identified in
Ti for the first time. A comparison of results on low-energy
octupole states in the neutron-rich Ca and Ti isotopes with the results of
Random Phase Approximation calculations demonstrates that the observed
systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure
Spectroscopy of Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes
Excited states of the nucleus Ti have been studied, via both
inverse-kinematics proton scattering and one-neutron knockout from Ti by
a liquid hydrogen target, using the GRETINA -ray tracking array.
Inelastic proton-scattering cross sections and deformation lengths have been
determined. A low-lying octupole state has been tentatively identified in
Ti for the first time. A comparison of results on low-energy
octupole states in the neutron-rich Ca and Ti isotopes with the results of
Random Phase Approximation calculations demonstrates that the observed
systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure
Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide
One of the most fundamental devices for electronics and optoelectronics is
the PN junction, which provides the functional element of diodes, bipolar
transistors, photodetectors, LEDs, and solar cells, among many other devices.
In conventional PN junctions, the adjacent p- and n-type regions of a
semiconductor are formed by chemical doping. Materials with ambipolar
conductance, however, allow for PN junctions to be configured and modified by
electrostatic gating. This electrical control enables a single device to have
multiple functionalities. Here we report ambipolar monolayer WSe2 devices in
which two local gates are used to define a PN junction exclusively within the
sheet of WSe2. With these electrically tunable PN junctions, we demonstrate
both PN and NP diodes with ideality factors better than 2. Under excitation
with light, the diodes show photodetection responsivity of 210 mA/W and
photovoltaic power generation with a peak external quantum efficiency of 0.2%,
promising numbers for a nearly transparent monolayer sheet in a lateral device
geometry. Finally, we demonstrate a light-emitting diode based on monolayer
WSe2. These devices provide a fundamental building block for ubiquitous,
ultra-thin, flexible, and nearly transparent optoelectronic and electronic
applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure
Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied
using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb
excitation reactions. The deduced E2 strengths illustrate the enhanced
collectivity of the neutron-rich Fe isotopes up to N=40. The results are
interpreted by the generalized concept of valence proton symmetry which
describes the evolution of nuclear structure around N=40 as governed by the
number of valence protons with respect to Z~30. The deformation suggested by
the experimental data is reproduced by state-of-the-art shell calculations with
a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
- …