43 research outputs found

    Abscopal Effects in Radio-Immunotherapy—Response Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition

    Get PDF
    Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has shown promising results in the fight against cancer. Systemic anti-tumor reactions due to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed “abscopal effect” (AbE). Combination of both treatments can enhance this effect. The aim of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened 168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg every 3 weeks) or nivolumab (3 mg/kg every 2 weeks) and at least one metastasis outside the irradiation field. We estimated the total dose during ICI for each patient using the linear quadratic (LQ) model expressed as 2 Gy equivalent dose (EQD2) using α/β of 10 Gy. Radiological images were required showing progression or no change in NiLs before and regression after completion of RT(s). Images must have been acquired at least 4 weeks after the onset of ICI or RT. The surface areas of the longest diameters of the short- and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%) patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously, and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24). One to six lesions (mean = 3 ± 2) in each AbE patient were analyzed. Patients were diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC) (n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice (n = 2), or three times (n = 4) with an average total EQD2 of 120.0 ± 37.7 Gy. Eighty-two percent of RTs of AbE patients were applied with high single doses. MM patients received pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration of 45 ± 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict inclusion criteria were applied to distinguish the effects of AbE from the systemic effect of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI and could contribute to the development of a broader range of cancer treatments

    Profiling target engagement and cellular uptake of cRGD-decorated clinical-stage core-crosslinked polymeric micelles

    Get PDF
    Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvβ3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvβ3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvβ3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application

    Robotic Stereotactic Radiosurgery in Melanoma Patients with Brain Metastases under Simultaneous Anti-PD-1 Treatment

    Get PDF
    Combination concepts of radiotherapy and immune checkpoint inhibition are currently of high interest. We examined imaging findings, acute toxicity, and local control in patients with melanoma brain metastases receiving programmed death 1 (PD-1) inhibitors and/or robotic stereotactic radiosurgery (SRS). Twenty-six patients treated with SRS alone (n = 13;20 lesions) or in combination with anti-PD-1 therapy (n = 13;28 lesions) were analyzed. Lesion size was evaluated three and six months after SRS using a volumetric assessment based on cranial magnetic resonance imaging (cMRI) and acute toxicity after 12 weeks according to the Common Terminology Criteria for Adverse Events (CTCAE). Local control after six months was comparable (86%, SRS + anti-PD-1, and 80%, SRS). All toxicities reported were less than or equal to grade 2. One metastasis (5%) in the SRS group and six (21%) in the SRS + anti-PD-1 group increased after three months, whereas four (14%) of the six regressed during further follow-ups. This was rated as pseudoprogression (PsP). Three patients (23%) in the SRS + anti-PD-1 group showed characteristics of PsP. Treatment with SRS and anti-PD-1 antibodies can be combined safely in melanoma patients with cerebral metastases. Early volumetric progression of lesions under simultaneous treatment may be related to PsP;thus, the evaluation of combined radioimmunotherapy remains challenging and requires experienced teams

    Assessing the efficacy and tolerability of PET-guided BrECADD versus eBEACOPP in advanced-stage, classical Hodgkin lymphoma (HD21): a randomised, multicentre, parallel, open-label, phase 3 trial

    Get PDF
    Background Intensified systemic chemotherapy has the highest primary cure rate for advanced-stage, classical Hodgkin lymphoma but this comes with a cost of severe and potentially life long, persisting toxicities. With the new regimen of brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone (BrECADD), we aimed to improve the risk-to-benefit ratio of treatment of advanced-stage, classical Hodgkin lymphoma guided by PET after two cycles. Methods This randomised, multicentre, parallel, open-label, phase 3 trial was done in 233 trial sites across nine countries. Eligible patients were adults (aged ≤60 years) with newly diagnosed, advanced-stage, classical Hodgkin lymphoma (ie, Ann Arbor stage III/IV, stage II with B symptoms, and either one or both risk factors of large mediastinal mass and extranodal lesions). Patients were randomly assigned (1:1) to four or six cycles (21-day intervals) of escalated doses of etoposide (200 mg/m2 intravenously on days 1–3), doxorubicin (35 mg/m2 intravenously on day 1), and cyclophosphamide (1250 mg/m2 intravenously on day 1), and standard doses of bleomycin (10 mg/m2 intravenously on day 8), vincristine (1·4 mg/m2 intravenously on day 8), procarbazine (100 mg/m2 orally on days 1–7), and prednisone (40 mg/m2 orally on days 1–14; eBEACOPP) or BrECADD, guided by PET after two cycles. Patients and investigators were not masked to treatment assignment. Hierarchical coprimary objectives were to show (1) improved tolerability defined by treatment-related morbidity and (2) non-inferior efficacy defined by progression-free survival with an absolute non-inferiority margin of 6 percentage points of BrECADD compared with eBEACOPP. An additional test of superiority of progression-free survival was to be done if non-inferiority had been established. Analyses were done by intention to treat; the treatment-related morbidity assessment required documentation of at least one chemotherapy cycle. This trial was registered at ClinicalTrials.gov (NCT02661503). Findings Between July 22, 2016, and Aug 27, 2020, 1500 patients were enrolled, of whom 749 were randomly assigned to BrECADD and 751 to eBEACOPP. 1482 patients were included in the intention-to-treat analysis. The median age of patients was 31 years (IQR 24–42). 838 (56%) of 1482 patients were male and 644 (44%) were female. Most patients were White (1352 [91%] of 1482). Treatment-related morbidity was significantly lower with BrECADD (312 [42%] of 738 patients) than with eBEACOPP (430 [59%] of 732 patients; relative risk 0·72 [95% CI 0·65–0·80]; p<0·0001). At a median follow-up of 48 months, BrECADD improved progression-free survival with a hazard ratio of 0·66 (0·45–0·97; p=0·035); 4-year progression-free survival estimates were 94·3% (95% CI 92·6–96·1) for BrECADD and 90·9% (88·7–93·1) for eBEACOPP. 4-year overall survival rates were 98·6% (97·7–99·5) and 98·2% (97·2–99·3), respectively. Interpretation BrECADD guided by PET after two cycles is better tolerated and more effective than eBEACOPP in first-line treatment of adult patients with advanced-stage, classical Hodgkin lymphoma

    Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles

    Get PDF
    Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g–1) upon the first administration to 15% ID g–1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation

    Modulating and monitoring the microenvironment in cancer and renal fibrosis

    No full text
    The dysregulation of microenvironmental homeostasis, particularly of the extracellular matrix (ECM), is a common driving force in various diseases, including renal fibrosis and cancer. A pathological microenvironment, together with an abnormal vascular network and dysfunctional lymphatic system, form the basis for the enhanced permeability and retention (EPR) effect, which is the underlying mechanism for passive tumor targeting with nanomedicine formulations. The EPR effect, however, is a highly variable phenomenon, in animal models and in patients. In this thesis, pharmacological and physical strategies to modulate EPR based nanomedicine delivery to tumors are assessed, including vascular normalization and sonopermeation (i.e. the combination of ultrasound (US) and microbubbles (MB)). Elevated expression of the histidine rich glycoprotein (HRG) polarizes tumor associated macrophages toward an anti tumor M1 like phenotype, thereby inducing vascular normalization and enhancing the EPR effect. Hard- and soft shelled MB formulations are used in this thesis to study the impact of sonopermeation on the EPR mediated accumulation and penetration of liposomes into highly cellular A431 and highly stromal BxPC 3 carcinoma xenografts. Our work demonstrates that both vascular normalization and sonopermeation improve the tumor accumulation, tumor penetration and the intra tumoral distribution of nanomedicine based drug delivery systems. Excessive ECM deposition in the kidney impairs renal function, contributing to incidence and severity of chronic kidney disease (CKD). As an alternative to needle based biopsies, collagen and elastin specific molecular imaging were explored in this thesis for non invasively diagnosing and staging renal fibrosis. The collagen binding protein CNA35 accumulated significantly stronger in fibrotic kidneys, and specifically detected collagen types I and III on murine and human sections. Elastin was found to be de novo overexpressed in fibrotic renal tissues of mice, rats and patients. The elastin specific molecular imaging agent ESMA captured fibrotic areas in human kidney samples. Fibrosis progression and anti fibrotic therapy responses were visualized and quantified by means of ESMA MRI. Taken together, these findings indicate that the modulation of the microenvironment improves EPR mediated tumor targeting and demonstrate that ECM monitoring enables specific and repetitive assessment of renal fibrosis. Nanomedicines and molecular imaging hold the potential to substantially transform the diagnosis and treatment of cancer and CKD

    Robot-assisted Extracranial Stereotactic Radiotherapy of Adrenal Metastases in Oligometastatic Non-small Cell Lung Cancer

    No full text
    Aim: The aim of this study was to evaluate the efficacy and toxicity of stereotactic body radiation therapy (SBRT) in the treatment of patients with adrenal metastases in oligometastatic non-small-cell lung cancer (NSCLC). Patients and Methods: Between November 2012 and May 2015, fifteen patients with oligometastatic non-small cell lung cancer and adrenal metastases were treated with the Cyberknife (R) system. The primary endpoint was local control. Results: The 1-year and 2-year local control rates were 60% and 46.6%, respectively. The differences in local control for patients with metachronous and synchronous metastases reached statistical significance (p= 0.00028). Two-year overall survival of 91.2% for patients with metachronous metastases was also more favourable compared to patients with synchronous adrenal metastases with 42.8%. Conclusion: Extracranial stereotactic radiotherapy with the Cyberknife (R) is a safe and non-invasive technique that extends the therapeutic spectrum in the treatment of patients with adrenal metastases in oligometastatic NSCLC

    Fibrosis imaging: Current concepts and future directions

    Get PDF
    Fibrosis plays an important role in many different pathologies. It results from tissue injury, chronic inflammation, autoimmune reactions and genetic alterations, and it is characterized by the excessive deposition of extracellular matrix components. Biopsies are routinely employed for fibrosis diagnosis, but they suffer from several drawbacks, including their invasive nature, sampling variability and limited spatial information. To overcome these limitations, multiple different imaging tools and technologies have been evaluated over the years, including X-ray imaging, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These modalities can provide anatomical, functional and molecular imaging information which is useful for fibrosis diagnosis and staging, and they may also hold potential for the longitudinal assessment of therapy responses. Here, we summarize the use of non-invasive imaging techniques for monitoring fibrosis in systemic autoimmune diseases, in parenchymal organs (such as liver, kidney, lung and heart), and in desmoplastic cancers. We also discuss how imaging biomarkers can be integrated in (pre-) clinical research to individualize and improve anti-fibrotic therapies

    Long-term results of robotic radiosurgery for non brachytherapy patients with cervical cancer

    No full text
    Background!#!Consolidation brachytherapy is a critical treatment component for cervical cancer patients undergoing primary chemoradiation. Some patients are unsuitable for brachytherapy for a variety of reasons. The use of alternatives (LINAC-based stereotactic radiosurgery or external beam boosts) compromise oncologic results in cervical cancer patients. Thus, we evaluated the value of brachytherapy-like doses prescriptions using robotic radiosurgery (CyberKnife®, CR, Acuuray, Sunnyvale, CA, USA).!##!Methods!#!From 06/2011 to 06/2015, 31 patients (median age 53 years; range 30-77 years) with histologically proven FIGO stages IB-IVB cervical cancer underwent primary chemoradiation. All patients were either not suitable for intracervical brachytherapy for a variety of reasons or refused the brachytherapy. To achieve an adequate dose within the tumor, a CK boost was applied after fiducial implantation. In 29 patients, a dose of either five times 6 Gy or five times 5 Gy was prescribed to the target volume. Two patients received three times 5 Gy. The target dose was prescribed to the 70% isodose. Treatment toxicity was documented once weekly regarding vaginal mucositis, bladder, and bowel irritation according to CTCAE v. 4.03. If possible 3 months after completion of treatment intracervical curettage was performed to exclude residual tumor and the patients were followed up clinically. Sparing of organs at risk (OAR) and outcome in terms of local control (LC), overall survival (OS), and progression-free survival (PFS) were assessed.!##!Results!#!Of the 31 patients, 30 have completed CK boost therapy. The median follow-up time was 40 months (range 5-84 months). General treatment tolerability was good. Except for 1 patient, who had diarrhea grade 3, no treatment related side effects above grade 2 were reported. Sparing of OAR was excellent. The 1‑, 3‑, and 5‑year OS rates were 89, 60, and 57% respectively across all stages. Seven patients showed progression (28%), only two of them with local relapse (8%), resulting in an LC rate of 92% after 3 and 5 years. Mean PFS was 41 months (range 2-84 months). Patients with local recurrence had PFS of 5 and 8 months. Five patients developed distant metastases. Fifteen patients (48%) underwent intracervical curettage 3 months after completion of treatment of which 14 (93%) had complete pathologic response.!##!Conclusion!#!Brachytherapy remains the standard of care for patients diagnosed with cervical cancer and indication for primary chemoradiation. In terms of local control, CyberKnife®-based boost concepts provide excellent local control. It can be an alternative for patients who cannot receive adequate brachytherapy. Distant relapse still remains a challenge in this context
    corecore