60 research outputs found

    The protective effect of chondroitin sulfate on induced arthritis in rats.

    Get PDF
    The protective effect of chondroitin sulfate on induced arthritis in rats

    Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    Get PDF
    Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C atom movements of up to 8 A ° upon channel gating, and predicts the location of the leucine– isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    The protective effect of chondroitin sulfate on induced arthritis in rats

    No full text
    The protective effect of chondroitin sulfate on induced arthritis in rat

    Chondroitin Sulfate Effect On Induced Arthritis In Rats

    No full text
    OBJECTIVE: Rodent models of osteoarthritis and rheumatoid arthritis are useful tools to study these disease processes. Adjuvant arthritis (AAR) is a model of polyarthritis widely used for preclinical testing of antiarthritis substances. We report the effect of two different doses of highly purified chondroitin sulfate (CS) pharmaceutical grade in the AAR animal model after oral administration.DESIGN: AAR was induced by a single intradermal injection of heat-inactivated Mycobacterium butyricum in incomplete Freund's adjuvant. The experiments included healthy animals, untreated arthritic animals, arthritic animals having been administered 300 or 900 mg/kg of CS daily, 14 days before AAR induction until the end of the experiment (day 28), arthritic animals having been administered 300 or 900 mg/kg of CS daily, from day 1 until the end of the experiment.RESULTS: CS was capable of significantly reducing the severity of arthritis along with oxidative stress, a consequence of chronic inflammatory processes occurring in AAR. The CS pre-treatment regimen was effective throughout the whole subacute phase, while treatment from day 1 proved effective only in the chronic period. The effects were confirmed by improved total antioxidant status and γ-glutamyltransferase activity. CS administered under a pre-treatment regimen was also able to reduce the production of pro-inflammatory cytokines, C-reactive protein in plasma, phagocytic activity and the intracellular oxidative burst of neutrophils.CONCLUSIONS: CS proved to be effective in slowing down AAR development and in reducing disease markers, thus supporting its beneficial activity as a drug in humans
    corecore