21,515 research outputs found
Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field
The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma
Runtime Verification of Temporal Properties over Out-of-order Data Streams
We present a monitoring approach for verifying systems at runtime. Our
approach targets systems whose components communicate with the monitors over
unreliable channels, where messages can be delayed or lost. In contrast to
prior works, whose property specification languages are limited to
propositional temporal logics, our approach handles an extension of the
real-time logic MTL with freeze quantifiers for reasoning about data values. We
present its underlying theory based on a new three-valued semantics that is
well suited to soundly and completely reason online about event streams in the
presence of message delay or loss. We also evaluate our approach
experimentally. Our prototype implementation processes hundreds of events per
second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape
Superconductivity in the Kondo lattice model
We study the Kondo lattice model with additional attractive interaction
between the conduction electrons within the dynamical mean-field theory using
the numerical renormalization group to solve the effective quantum impurity
problem. In addition to normal-state and magnetic phases we also allow for the
occurrence of a superconducting phase. In the normal phase we observe a very
sensitive dependence of the low-energy scale on the conduction-electron
interaction. We discuss the dependence of the superconducting transition on the
interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding
A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution
The Schramm-Loewner evolution (SLE) can be simulated by dividing the time
interval into N subintervals and approximating the random conformal map of the
SLE by the composition of N random, but relatively simple, conformal maps. In
the usual implementation the time required to compute a single point on the SLE
curve is O(N). We give an algorithm for which the time to compute a single
point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a
value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to
introduction, added 5 references and corrected a few typo
Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer
Precision drift tube chambers with a sense wire positioning accuracy of
better than 20 microns are under construction for the ATLAS muon spectrometer.
70% of the 88 large chambers for the outermost layer of the central part of the
spectrometer have been assembled. Measurements during chamber construction of
the positions of the sense wires and of the sensors for the optical alignment
monitoring system demonstrate that the requirements for the mechanical
precision of the chambers are fulfilled
Stationarity of SLE
A new method to study a stopped hull of SLE(kappa,rho) is presented. In this
approach, the law of the conformal map associated to the hull is invariant
under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied
using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur
Strain relaxation in small adsorbate islands: O on W(110)
The stress-induced lattice changes in a p(1x2) ordered oxygen layer on W(110)
are measured by low-energy electron diffraction. We have observed that small
oxygen islands show a mismatch with the underlying lattice. Our results
indicate that along [1-10] the average mismatch scales inversely with the
island size as 1/L for all oxygen coverages up to 0.5 ML, while along [001] it
is significant only for the smallest oxygen islands and scales as a higher
power of the inverse island size. The behaviour along [1-10] is described by a
one-dimensional finite-size Frenkel-Kontorova model. Using this model, together
with calculated force constants, we make a quantitative estimate for the change
of surface-stress upon oxygen adsorption. The result is consistent with our
ab-initio calculations, which give a relative compressive stress of -4.72 N/m
along [1-10] and a minute relative tensile stress of 0.15 N/m along [001]. The
scaling along [001] is qualitatively explained as an effect induced by the
lattice relaxation in the [1-10] direction.Comment: 22 pages, 5 figure
External Operators and Anomalous Dimensions in Soft-Collinear Effective Theory
It has recently been argued that soft-collinear effective theory for
processes involving both soft and collinear partons contains a new
soft-collinear mode, which can communicate between the soft and collinear
sectors of the theory. The formalism incorporating the corresponding fields
into the effective Lagrangian is extended to include external current and
four-quark operators relevant to weak interactions. An explicit calculation of
the anomalous dimensions of these operators reveals that soft-collinear modes
are needed for correctly describing the ultraviolet behavior of the effective
theory.Comment: 15 pages, 2 figure
Another derivation of the geometrical KPZ relations
We give a physicist's derivation of the geometrical (in the spirit of
Duplantier-Sheffield) KPZ relations, via heat kernel methods. It gives a
covariant way to define neighborhoods of fractals in 2d quantum gravity, and
shows that these relations are in the realm of conformal field theory
Construction and Test of MDT Chambers for the ATLAS Muon Spectrometer
The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the AT-
LAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of
pressurized drift tubes on either side of a space frame carrying an optical
monitoring system to correct for deformations. The full-scale prototype of a
large MDT chamber has been constructed with methods suitable for large-scale
production. X-ray measurements at CERN showed a positioning accuracy of the
sense wires in the chamber of better than the required 20 ?microns (rms). The
performance of the chamber was studied in a muon beam at CERN. Chamber
production for ATLAS now has started
- …