21,515 research outputs found

    Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field

    Get PDF
    The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma

    Runtime Verification of Temporal Properties over Out-of-order Data Streams

    Full text link
    We present a monitoring approach for verifying systems at runtime. Our approach targets systems whose components communicate with the monitors over unreliable channels, where messages can be delayed or lost. In contrast to prior works, whose property specification languages are limited to propositional temporal logics, our approach handles an extension of the real-time logic MTL with freeze quantifiers for reasoning about data values. We present its underlying theory based on a new three-valued semantics that is well suited to soundly and completely reason online about event streams in the presence of message delay or loss. We also evaluate our approach experimentally. Our prototype implementation processes hundreds of events per second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape

    Superconductivity in the Kondo lattice model

    Full text link
    We study the Kondo lattice model with additional attractive interaction between the conduction electrons within the dynamical mean-field theory using the numerical renormalization group to solve the effective quantum impurity problem. In addition to normal-state and magnetic phases we also allow for the occurrence of a superconducting phase. In the normal phase we observe a very sensitive dependence of the low-energy scale on the conduction-electron interaction. We discuss the dependence of the superconducting transition on the interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding

    A Fast Algorithm for Simulating the Chordal Schramm-Loewner Evolution

    Full text link
    The Schramm-Loewner evolution (SLE) can be simulated by dividing the time interval into N subintervals and approximating the random conformal map of the SLE by the composition of N random, but relatively simple, conformal maps. In the usual implementation the time required to compute a single point on the SLE curve is O(N). We give an algorithm for which the time to compute a single point is O(N^p) with p<1. Simulations with kappa=8/3 and kappa=6 both give a value of p of approximately 0.4.Comment: 17 pages, 10 figures. Version 2 revisions: added a paragraph to introduction, added 5 references and corrected a few typo

    Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    Full text link
    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled

    Stationarity of SLE

    Full text link
    A new method to study a stopped hull of SLE(kappa,rho) is presented. In this approach, the law of the conformal map associated to the hull is invariant under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur

    Strain relaxation in small adsorbate islands: O on W(110)

    Full text link
    The stress-induced lattice changes in a p(1x2) ordered oxygen layer on W(110) are measured by low-energy electron diffraction. We have observed that small oxygen islands show a mismatch with the underlying lattice. Our results indicate that along [1-10] the average mismatch scales inversely with the island size as 1/L for all oxygen coverages up to 0.5 ML, while along [001] it is significant only for the smallest oxygen islands and scales as a higher power of the inverse island size. The behaviour along [1-10] is described by a one-dimensional finite-size Frenkel-Kontorova model. Using this model, together with calculated force constants, we make a quantitative estimate for the change of surface-stress upon oxygen adsorption. The result is consistent with our ab-initio calculations, which give a relative compressive stress of -4.72 N/m along [1-10] and a minute relative tensile stress of 0.15 N/m along [001]. The scaling along [001] is qualitatively explained as an effect induced by the lattice relaxation in the [1-10] direction.Comment: 22 pages, 5 figure

    External Operators and Anomalous Dimensions in Soft-Collinear Effective Theory

    Full text link
    It has recently been argued that soft-collinear effective theory for processes involving both soft and collinear partons contains a new soft-collinear mode, which can communicate between the soft and collinear sectors of the theory. The formalism incorporating the corresponding fields into the effective Lagrangian is extended to include external current and four-quark operators relevant to weak interactions. An explicit calculation of the anomalous dimensions of these operators reveals that soft-collinear modes are needed for correctly describing the ultraviolet behavior of the effective theory.Comment: 15 pages, 2 figure

    Another derivation of the geometrical KPZ relations

    Full text link
    We give a physicist's derivation of the geometrical (in the spirit of Duplantier-Sheffield) KPZ relations, via heat kernel methods. It gives a covariant way to define neighborhoods of fractals in 2d quantum gravity, and shows that these relations are in the realm of conformal field theory

    Construction and Test of MDT Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the AT- LAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurized drift tubes on either side of a space frame carrying an optical monitoring system to correct for deformations. The full-scale prototype of a large MDT chamber has been constructed with methods suitable for large-scale production. X-ray measurements at CERN showed a positioning accuracy of the sense wires in the chamber of better than the required 20 ?microns (rms). The performance of the chamber was studied in a muon beam at CERN. Chamber production for ATLAS now has started
    corecore